Do you want to publish a course? Click here

Central galaxies in different environments: Do they have similar properties?

272   0   0.0 ( 0 )
 Added by Ivan Lacerna
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform an exhaustive comparison among central galaxies from SDSS catalogs in different local environments at 0.01<=z<=0.08. The central galaxies are separated into two categories: group centrals (host halos containing satellites) and field centrals (host halos without satellites). From the latter, we select other two subsamples: isolated centrals and bright field centrals, both with the same magnitude limit. The stellar mass (Ms) distributions of the field and group central galaxies are different, which explains why in general the field central galaxies are mainly located in the blue cloud/star forming regions, whereas the group central galaxies are strongly biased to the red sequence/passive regions. The isolated centrals occupy the same regions as the bright field centrals since both populations have similar Ms distributions. At parity of Ms, the color and specific star formation rate (sSFR) distributions of the samples are similar, specially between field and group centrals. Furthermore, we find that the stellar-to-halo mass (Ms-Mh) relation of isolated galaxies does not depend on the color, sSFR and morphological type. For systems without satellites, the Ms-Mh relation steepens at high halo masses compared to group centrals, which is a consequence of assuming a one-to-one relation between group total stellar mass and halo mass. Under the same assumption, the scatter around the Ms-Mh relation of centrals with satellites increases with halo mass. Our results suggest that the mass growth of central galaxies is mostly driven by the halo mass, with environment and mergers playing a secondary role.



rate research

Read More

Red halos are faint, extended and extremely red structures that have been reported around various types of galaxies since the mid-1990s. The colours of these halos are too red to be reconciled with any hitherto known type of stellar population, and instead indicative of a very bottom-heavy stellar initial mass function (IMF). Due to the large mass-to-light ratios of such stellar halos, they could contribute substantially to the baryonic masses of galaxies while adding very little to their overall luminosities. The red halos of galaxies therefore constitute potential reservoirs for some of the baryons still missing from inventories in the low-redshift Universe. While most studies of red halos have focused on disk galaxies, a red excess has also been reported in the faint outskirts of blue compact galaxies (BCGs). A bottom-heavy IMF can explain the colours of these structures as well, but due to model degeneracies, stellar populations with standard IMFs and abnormally high metallicities have also been demonstrated to fit the data. Here, we show that due to recent developments in the field of spectral synthesis, the metallicities required in this alternative scenario may be less extreme than previously thought. This suggests that the red excess seen in the outskirts of BCGs may stem from a normal, intermediate-metallicity host galaxy rather than a red halo of the type seen around disk galaxies. The inferred host metallicity does, however, still require the host to be more metal-rich than the gas in the central starburst of BCGs, in contradiction with current simulations of how BCGs form.
122 - A. S. Saburova 2010
The disk masses of four low surface brightness galaxies (LSB) were estimated using marginal gravitational stability criterion and the stellar velocity dispersion data which were taken from Pizzella et al., 2008 [1]. The constructed mass models appear to be close to the models of maximal disk. The results show that the disks of LSB galaxies may be significantly more massive than it is usually accepted from their brightnesses. In this case their surface densities and masses appear to be rather typical for normal spirals. Otherwise, unlike the disks of many spiral galaxies, the LSB disks are dynamically overheated.
137 - Gary A Mamon 2010
We apply a simple, one-equation, galaxy formation model on top of the halos and subhalos of a high-resolution dark matter cosmological simulation to study how dwarf galaxies acquire their mass and, for better mass resolution, on over 10^5 halo merger trees, to predict when they form their stars. With the first approach, we show that the large majority of galaxies within group- and cluster-mass halos have acquired the bulk of their stellar mass through gas accretion and not via galaxy mergers. We deduce that most dwarf ellipticals are not built up by galaxy mergers. With the second approach, we constrain the star formation histories of dwarfs by requiring that star formation must occur within halos of a minimum circular velocity set by the evolution of the temperature of the IGM, starting before the epoch of reionization. We qualitatively reproduce the downsizing trend of greater ages at greater masses and predict an upsizing trend of greater ages as one proceeds to masses lower than m_crit. We find that the fraction of galaxies with very young stellar populations (more than half the mass formed within the last 1.5 Gyr) is a function of present-day mass in stars and cold gas, which peaks at 0.5% at m_crit=10^6-8 M_Sun, corresponding to blue compact dwarfs such as I Zw 18. We predict that the baryonic mass function of galaxies should not show a maximum at masses above 10^5.5, M_Sun, and we speculate on the nature of the lowest mass galaxies.
118 - Alexander Fritz 2009
We analyse the kinematic and chemical evolution of 203 distant spheroidal (elliptical and S0) galaxies at 0.2<z<0.8 which are located in different environments (rich clusters, low-mass clusters and in the field). VLT/FORS and CAHA/MOSCA spectra with intermediate-resolution have been acquired to measure the internal kinematics and stellar populations of the galaxies. From HST/ACS and WFPC2 imaging, surface brightness profiles and structural parameters were derived for half of the galaxy sample. The scaling relations of the Faber-Jackson relation and Kormendy relation as well as the Fundamental Plane indicate a moderate evolution for the whole galaxy population in each density regime. In all environments, S0 galaxies show a faster evolution than elliptical galaxies. For the cluster galaxies a slight radial dependence of the evolution out to one virial radius is found. Dividing the samples with respect to their mass, a mass dependent evolution with a stronger evolution of lower-mass galaxies (M<2x10^{11} M_{sun}) is detected. Evidence for recent star formation is provided by blue colours and weak OII emission or strong Hdelta absorption features in the spectra. The results are consistent with a down-sizing formation scenario which is independent from the environment of the galaxies.
We present an analysis of deep WSRT observations of the HI in 33 nearby early-type galaxies selected from a sample studied earlier at optical wavelengths with the SAURON integral-field spectrograph. The sample covers both field environments and the Virgo cluster. Our analysis shows that gas accretion plays a role in the evolution of field early-type galaxies, but less so for those in clusters. For detection limits of a few times 10^6 Msun, HI is detected in about 2/3 of the field galaxies, while <10% of the Virgo objects are detected. In about half of the detections, the HI forms a regularly rotating disc or ring. All HI discs have counterparts of ionised gas and inner HI discs are also detected in molecular gas. The cold ISM is dominated by molecular gas (M_H2/M_HI ~ 10). We conclude that accretion of HI is common for field early-type galaxies, but the amount of material involved is usually small. Cluster galaxies appear not to accrete HI. The few galaxies with a significant young sub-population all have inner gas discs, but for the remaining galaxies there is no trend between stellar population and HI. Some early-type galaxies are very gas rich, but only have an old population. The stellar populations of field galaxies are typically younger than those in Virgo. This is likely related to differences in accretion history. In about 50% of the galaxies we detect a central continuum source. In many objects this emission is from a low-luminosity AGN, in some it is consistent with the observed star formation. Galaxies with HI in the central regions are more likely detected in continuum. This is due to a higher probability for star formation to occur in such galaxies and not to HI-related AGN fuelling. (Abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا