Do you want to publish a course? Click here

A visual formalism for weights satisfying reverse inequalities

329   0   0.0 ( 0 )
 Added by Diego Maldonado
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this expository article we introduce a diagrammatic scheme to represent reverse classes of weights and some of their properties.



rate research

Read More

We present reverse Holder inequalities for Muckenhoupt weights in $mathbb{R}^n$ with an asymptotically sharp behavior for flat weights, namely $A_infty$ weights with Fujii-Wilson constant $(w)_{A_infty}to 1^+$. That is, the local integrability exponent in the reverse Holder inequality blows up as the weight becomes nearly constant. This is expressed in a precise and explicit computation of the constants involved in the reverse Holder inequality. The proofs avoid BMO methods and rely instead on precise covering arguments. Furthermore, in the one-dimensional case we prove sharp reverse Holder inequalities for one-sided and two sided weights in the sense that both the integrability exponent as well as the multiplicative constant appearing in the estimate are best possible. We also prove sharp endpoint weak-type reverse Holder inequalities and consider further extensions to general non-doubling measures and multiparameter weights.
133 - Jean Dolbeault 2018
This paper is devoted to a new family of reverse Hardy-Littlewood-Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and characterize the optimal functions. A striking open question is the possibility of concentration which is analyzed and related with nonlinear diffusion equations involving mean field drifts.
We prove the sharp quantitative stability for a wide class of weighted isoperimetric inequalities. More precisely, we consider isoperimetric inequalities in convex cones with homogeneous weights. Inspired by the proof of such isoperimetric inequalities through the ABP method, we construct a new convex coupling (i.e., a map that is the gradient of a convex function) between a generic set $E$ and the minimizer of the inequality (as in Gromovs proof of the isoperimetric inequality). Even if this map does not come from optimal transport, and even if there is a weight in the inequality, we adapt the methods of Figalli-Maggi-Pratelli and prove that if $E$ is almost optimal for the inequality then it is quantitatively close to a minimizer up to translations. Then, a delicate analysis is necessary to rule out the possibility of translations. As a step of our proof, we establish a sharp regularity result for restricted convex envelopes of a function that might be of independent interest.
219 - Guozhen Lu , Qiaohua Yang 2017
By using, among other things, the Fourier analysis techniques on hyperbolic and symmetric spaces, we establish the Hardy-Sobolev-Mazya inequalities for higher order derivatives on half spaces. The proof relies on a Hardy-Littlewood-Sobolev inequality on hyperbolic spaces which is of its independent interest. We also give an alternative proof of Benguria, Frank and Loss work concerning the sharp constant in the Hardy-Sobolev-Mazya inequality in the three dimensional upper half space. Finally, we show the sharp constant in the Hardy-Sobolev-Mazya inequality for bi-Laplacian in the upper half space of dimension five coincides with the Sobolev constant.
In this paper, we study an extension problem for the Ornstein-Uhlenbeck operator $L=-Delta+2xcdot abla +n$ and we obtain various characterisations of the solution of the same. We use a particular solution of that extension problem to prove a trace Hardy inequality for $L$ from which Hardys inequality for fractional powers of $L$ is obtained. We also prove an isometry property of the solution operator associated to the extension problem. Moreover, new $L^p-L^q$ estimates are obtained for the fractional powers of the Hermite operator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا