Do you want to publish a course? Click here

Nucleation, condensation and lambda-transition on a real-life stock market

343   0   0.0 ( 0 )
 Added by Mateusz Wilinski
 Publication date 2013
  fields Financial Physics
and research's language is English




Ask ChatGPT about the research

We fill a void in merging empirical and phenomenological characterisation of the dynamical phase transitions in complex systems by identifying three of them on real-life financial markets. We extract and interpret the empirical, numerical, and semi-analytical evidences for the existence of these phase transitions, by considering the Frankfurt Stock Exchange (FSE), as a typical example of a financial market of a medium size. Using the canonical object for the graph theory, i.e. the Minimal Spanning Tree (MST) network, we observe: (i) The initial phase transition from the equilibrium to non-equilibrium MST network in its nucleation phase, occurring at some critical time. Coalescence of edges on the FSEs transient leader is observed within the nucleation and is approximately characterized by the Lifsthiz-Slyozov growth exponent; (ii) The nucleation accelerates and transforms to the condensation process, in the second phase transition, forming a logarithmically diverging lambda-peak of short-range order parameters at the subsequent critical time - an analogon of such a transition in superfluidity; (iii) In the third phase transition, the peak logarithmically decreases over three quarters of the year, resulting in a few loosely connected sub-graphs. This peak is reminiscent of a non-equilibrium superstar-like superhub or a `dragon king effect, abruptly accelerating the evolution of the leader company. All these phase transitions are caused by the few richest vertices, which drift towards the leader and provide the most of the edges increasing the leaders degree. Thus, we capture an amazing phenomenon, likely of a more universal character, where a peripheral vertex becomes the one which is over dominating the complex network during an exceptionally long period of time.



rate research

Read More

The stock market has been known to form homogeneous stock groups with a higher correlation among different stocks according to common economic factors that influence individual stocks. We investigate the role of common economic factors in the market in the formation of stock networks, using the arbitrage pricing model reflecting essential properties of common economic factors. We find that the degree of consistency between real and model stock networks increases as additional common economic factors are incorporated into our model. Furthermore, we find that individual stocks with a large number of links to other stocks in a network are more highly correlated with common economic factors than those with a small number of links. This suggests that common economic factors in the stock market can be understood in terms of deterministic factors.
214 - Kun Guo 2011
Using a recently introduced method to quantify the time varying lead-lag dependencies between pairs of economic time series (the thermal optimal path method), we test two fundamental tenets of the theory of fixed income: (i) the stock market variations and the yield changes should be anti-correlated; (ii) the change in central bank rates, as a proxy of the monetary policy of the central bank, should be a predictor of the future stock market direction. Using both monthly and weekly data, we found very similar lead-lag dependence between the S&P500 stock market index and the yields of bonds inside two groups: bond yields of short-term maturities (Federal funds rate (FFR), 3M, 6M, 1Y, 2Y, and 3Y) and bond yields of long-term maturities (5Y, 7Y, 10Y, and 20Y). In all cases, we observe the opposite of (i) and (ii). First, the stock market and yields move in the same direction. Second, the stock market leads the yields, including and especially the FFR. Moreover, we find that the short-term yields in the first group lead the long-term yields in the second group before the financial crisis that started mid-2007 and the inverse relationship holds afterwards. These results suggest that the Federal Reserve is increasingly mindful of the stock market behavior, seen at key to the recovery and health of the economy. Long-term investors seem also to have been more reactive and mindful of the signals provided by the financial stock markets than the Federal Reserve itself after the start of the financial crisis. The lead of the S&P500 stock market index over the bond yields of all maturities is confirmed by the traditional lagged cross-correlation analysis.
162 - T. Gubiec , M. Wilinski 2014
We describe the impact of the intra-day activity pattern on the autocorrelation function estimator. We obtain an exact formula relating estimators of the autocorrelation functions of non-stationary process to its stationary counterpart. Hence, we proved that the day seasonality of inter-transaction times extends the memory of as well the process itself as its absolute value. That is, both processes relaxation to zero is longer.
In order to understand the origin of stock price jumps, we cross-correlate high-frequency time series of stock returns with different news feeds. We find that neither idiosyncratic news nor market wide news can explain the frequency and amplitude of price jumps. We find that the volatility patterns around jumps and around news are quite different: jumps are followed by increased volatility, whereas news tend on average to be followed by lower volatility levels. The shape of the volatility relaxation is also markedly different in the two cases. Finally, we provide direct evidence that large transaction volumes are_not_ responsible for large price jumps. We conjecture that most price jumps are induced by order flow fluctuations close to the point of vanishing liquidity.
We study the daily trading volume volatility of 17,197 stocks in the U.S. stock markets during the period 1989--2008 and analyze the time return intervals $tau$ between volume volatilities above a given threshold q. For different thresholds q, the probability density function P_q(tau) scales with mean interval <tau> as P_q(tau)=<tau>^{-1}f(tau/<tau>) and the tails of the scaling function can be well approximated by a power-law f(x)~x^{-gamma}. We also study the relation between the form of the distribution function P_q(tau) and several financial factors: stock lifetime, market capitalization, volume, and trading value. We find a systematic tendency of P_q(tau) associated with these factors, suggesting a multi-scaling feature in the volume return intervals. We analyze the conditional probability P_q(tau|tau_0) for $tau$ following a certain interval tau_0, and find that P_q(tau|tau_0) depends on tau_0 such that immediately following a short/long return interval a second short/long return interval tends to occur. We also find indications that there is a long-term correlation in the daily volume volatility. We compare our results to those found earlier for price volatility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا