Do you want to publish a course? Click here

Learning Non-Linear Feature Maps

116   0   0.0 ( 0 )
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Feature selection plays a pivotal role in learning, particularly in areas were parsimonious features can provide insight into the underlying process, such as biology. Recent approaches for non-linear feature selection employing greedy optimisation of Centred Kernel Target Alignment(KTA), while exhibiting strong results in terms of generalisation accuracy and sparsity, can become computationally prohibitive for high-dimensional datasets. We propose randSel, a randomised feature selection algorithm, with attractive scaling properties. Our theoretical analysis of randSel provides strong probabilistic guarantees for the correct identification of relevant features. Experimental results on real and artificial data, show that the method successfully identifies effective features, performing better than a number of competitive approaches.



rate research

Read More

Recent non-linear feature selection approaches employing greedy optimisation of Centred Kernel Target Alignment(KTA) exhibit strong results in terms of generalisation accuracy and sparsity. However, they are computationally prohibitive for large datasets. We propose randSel, a randomised feature selection algorithm, with attractive scaling properties. Our theoretical analysis of randSel provides strong probabilistic guarantees for correct identification of relevant features. RandSels characteristics make it an ideal candidate for identifying informative learned representations. Weve conducted experimentation to establish the performance of this approach, and present encouraging results, including a 3rd position result in the recent ICML black box learning challenge as well as competitive results for signal peptide prediction, an important problem in bioinformatics.
Nonlinear kernels can be approximated using finite-dimensional feature maps for efficient risk minimization. Due to the inherent trade-off between the dimension of the (mapped) feature space and the approximation accuracy, the key problem is to identify promising (explicit) features leading to a satisfactory out-of-sample performance. In this work, we tackle this problem by efficiently choosing such features from multiple kernels in a greedy fashion. Our method sequentially selects these explicit features from a set of candidate features using a correlation metric. We establish an out-of-sample error bound capturing the trade-off between the error in terms of explicit features (approximation error) and the error due to spectral properties of the best model in the Hilbert space associated to the combined kernel (spectral error). The result verifies that when the (best) underlying data model is sparse enough, i.e., the spectral error is negligible, one can control the test error with a small number of explicit features, that can scale poly-logarithmically with data. Our empirical results show that given a fixed number of explicit features, the method can achieve a lower test error with a smaller time cost, compared to the state-of-the-art in data-dependent random features.
Ensemble methods, such as stacking, are designed to boost predictive accuracy by blending the predictions of multiple machine learning models. Recent work has shown that the use of meta-features, additional inputs describing each example in a dataset, can boost the performance of ensemble methods, but the greatest reported gains have come from nonlinear procedures requiring significant tuning and training time. Here, we present a linear technique, Feature-Weighted Linear Stacking (FWLS), that incorporates meta-features for improved accuracy while retaining the well-known virtues of linear regression regarding speed, stability, and interpretability. FWLS combines model predictions linearly using coefficients that are themselves linear functions of meta-features. This technique was a key facet of the solution of the second place team in the recently concluded Netflix Prize competition. Significant increases in accuracy over standard linear stacking are demonstrated on the Netflix Prize collaborative filtering dataset.
Hybrid Quantum-Classical (HQC) Architectures are used in near-term NISQ Quantum Computers for solving Quantum Machine Learning problems. The quantum advantage comes into picture due to the exponential speedup offered over classical computing. One of the major challenges in implementing such algorithms is the choice of quantum embeddings and the use of a functionally correct quantum variational circuit. In this paper, we present an application of QSVM (Quantum Support Vector Machines) to predict if a person will require mental health treatment in the tech world in the future using the dataset from OSMI Mental Health Tech Surveys. We achieve this with non-classically simulable feature maps and prove that NISQ HQC Architectures for Quantum Machine Learning can be used alternatively to create good performance models in near-term real-world applications.
Several multiagent reinforcement learning (MARL) algorithms have been proposed to optimize agents decisions. Due to the complexity of the problem, the majority of the previously developed MARL algorithms assumed agents either had some knowledge of the underlying game (such as Nash equilibria) and/or observed other agents actions and the rewards they received. We introduce a new MARL algorithm called the Weighted Policy Learner (WPL), which allows agents to reach a Nash Equilibrium (NE) in benchmark 2-player-2-action games with minimum knowledge. Using WPL, the only feedback an agent needs is its own local reward (the agent does not observe other agents actions or rewards). Furthermore, WPL does not assume that agents know the underlying game or the corresponding Nash Equilibrium a priori. We experimentally show that our algorithm converges in benchmark two-player-two-action games. We also show that our algorithm converges in the challenging Shapleys game where previous MARL algorithms failed to converge without knowing the underlying game or the NE. Furthermore, we show that WPL outperforms the state-of-the-art algorithms in a more realistic setting of 100 agents interacting and learning concurrently. An important aspect of understanding the behavior of a MARL algorithm is analyzing the dynamics of the algorithm: how the policies of multiple learning agents evolve over time as agents interact with one another. Such an analysis not only verifies whether agents using a given MARL algorithm will eventually converge, but also reveals the behavior of the MARL algorithm prior to convergence. We analyze our algorithm in two-player-two-action games and show that symbolically proving WPLs convergence is difficult, because of the non-linear nature of WPLs dynamics, unlike previous MARL algorithms that had either linear or piece-wise-linear dynamics. Instead, we numerically solve WPLs dynamics differential equations and compare the solution to the dynamics of previous MARL algorithms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا