HRTEM, nano-beam electronic diffraction, energy dispersive X-rays scanning spectroscopy, Vibrating Sample Magnetometry (VSM) and FerroMagnetic Resonance (FMR) techniques are used in view of comparing (static and dynamic) magnetic and structural properties of Co2MnGe (13 nm)/Al2O3 (3 nm)/Co (13 nm) tunnel magnetic junctions (TMJ), deposited on various single crystalline substrates (a-plane sapphire, MgO(100) and Si(111)). They allow for providing a correlation between these magnetic properties and the fine structure investigated at atomic scale. The Al2O3 tunnel barrier is always amorphous and contains a large concentration of Co atoms, which, however, is significantly reduced when using a sapphire substrate. The Co layer is polycrystalline and shows larger grains for films grown on a sapphire substrate. The VSM investigation reveals in-plane anisotropy only for samples grown on a sapphire substrate. The FMR spectra of the TMJs are compared to the obtained ones with a single Co and Co2MnGe films of identical thickness deposited on a sapphire substrate. As expected, two distinct modes are detected in the TMJs while only one mode is observed in each single film. For the TMJ grown on a sapphire substrate the FMR behavior does not significantly differ from the superposition of the individual spectra of the single films, allowing for concluding that the exchange coupling between the two magnetic layers is too small to give rise to observable shifts. For TMJs grown on a Si or on a MgO substrate the resonance spectra reveal one mode which is nearly identical to the obtained one in the single Co film, while the other observed resonance shows a considerably smaller intensity and cannot be described using the magnetic parameters appropriate to the single Co2MnGe film.