Do you want to publish a course? Click here

Extended Lyman-alpha emission from a high-z DLA at z=3.115

318   0   0.0 ( 0 )
 Added by Nobunari Kashikawa
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We searched for star formation activity associated with high-z Damped Lyman-alpha systems (DLAs) with Subaru telescope. We used a set of narrow-band (NB) filters whose central wavelengths correspond to the redshifted Lyman-alpha emission lines of targeted DLA absorbers at 3<z<4.5. We detected one apparent NB-excess object located 3.80 arcsec (~28kpc) away from the quasar SDSS J031036.84+005521.7. Follow-up spectroscopy revealed an asymmetric Lyman-alpha emission at z_em=3.115+/-0.003, which perfectly matches the sub-DLA trough at z_abs=3.1150 with logN(HI)/cm^-2=20.05. The Lyman-alpha luminosity is estimated to be L(LyA)=1.07x10^42 erg s^-1, which corresponds to a star formation rate of 0.97 M_odot yr^-1. Interestingly, the detected Lyman-alpha emission is spatially extended with a sharp peak. The large extent of the Lyman-alpha emission is remarkably one-sided toward the quasar line-of-sight, and is redshifted. The observed spatially asymmetric surface brightness profile can be qualitatively explained by a model of a DLA host galaxy, assuming a galactic outflow and a clumpy distribution of HI clouds in the circumgalactic medium. This large Lyman-alpha extension, which is similar to those found in Rauch et al. (2008), could be the result of complicated anisotropic radiative transfer through the surrounding neutral gas embedded in the DLA.



rate research

Read More

We present the highest redshift detections of resolved Lyman alpha emission, using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS CDF-S. We detect Lyman alpha emission from three spectroscopically confirmed z = 4.4 Lyman alpha emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Lyman alpha emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Lyman alpha photons at high redshift. While our data do not support a positional offset between the Lyman alpha and rest-frame ultraviolet (UV) continuum emission, the half-light radii in two out of the three galaxies are significantly larger in Lyman alpha than in the rest-frame UV continuum. This result is confirmed when comparing object sizes in a stack of all objects in both bands. Additionally, the narrowband flux detected with HST is significantly less than observed in similar filters from the ground. These results together imply that the Lyman alpha emission is not strictly confined to its indigenous star-forming regions. Rather, the Lyman alpha emission is more extended, with the missing HST flux likely existing in a diffuse outer halo. This suggests that the radiative transfer of Lyman alpha photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts.
We present spectroscopic measurements of the [OIII] emission line from two subregions of strong Lyman-alpha emission in a radio-quiet Lyman-alpha blob (LAB). The blob under study is LAB1 (Steidel et al. 2000) at z ~ 3.1, and the [OIII] detections are from the two Lyman break galaxies embedded in the blob halo. The [OIII] measurements were made with LUCIFER on the 8.4m Large Binocular Telescope and NIRSPEC on 10m Keck Telescope. Comparing the redshift of the [OIII] measurements to Lyman-alpha redshifts from SAURON (Weijmans et al. 2010) allows us to take a step towards understanding the kinematics of the gas in the blob. Using both LUCIFER and NIRSPEC we find velocity offsets between the [OIII] and Lyman-alpha redshifts that are modestly negative or consistent with 0 km/s in both subregions studied (ranging from -72 +/- 42 -- +6 +/- 33 km/s). A negative offset means Lyman-alpha is blueshifted with respect to [OIII], a positive offset then implies Lyman-alpha is redshifted with respect to [OIII]. These results may imply that outflows are not primarily responsible for Lyman alpha escape in this LAB, since outflows are generally expected to produce a positive velocity offset (McLinden et al. 2011). In addition, we present an [OIII] line flux upper limit on a third region of LAB1, a region that is unassociated with any underlying galaxy. We find that the [OIII] upper limit from the galaxy-unassociated region of the blob is at least 1.4 -- 2.5 times fainter than the [OIII] flux from one of the LBG-associated regions and has an [OIII] to Lyman-alpha ratio measured at least 1.9 -- 3.4 times smaller than the same ratio measured from one of the LBGs.
270 - J. Rosdahl , J. Blaizot 2011
{Abridged} We investigate the observability of cold accretion streams at redshift 3 via Lyman-alpha (Lya) emission and the feasibility of cold accretion as the main driver of Lya blobs (LABs). We run cosmological zoom simulations focusing on 3 halos spanning two orders of magnitude in mass, roughly from 10^11 to 10^13 solar masses. We use a version of the Ramses code that includes radiative transfer of UV photons, and we employ a refinement strategy that allows us to resolve accretion streams in their natural environment to an unprecedented level. For the first time, we self-consistently model self-shielding in the cold streams from the cosmological UV background, which enables us to predict their temperatures, ionization states and Lya luminosities with improved accuracy. We find the efficiency of gravitational heating in cold streams in a ~10^11 solar mass halo is around 10-20% throughout most of the halo but reaching much higher values close to the center. As a result most of the Lya luminosity comes from gas which is concentrated at the central 20% of the halo radius, leading to Lya emission which is not extended. In more massive halos, of >10^12 solar masses, cold accretion is complex and disrupted, and gravitational heating does not happen as a steady process. Ignoring the factors of Lya scattering, local UV enhancement, and SNe feedback, cold accretion alone in these massive halos can produce LABs that largely agree with observations in terms of morphology, extent, and luminosity. Our simulations slightly and systematically over-predict LAB abundances, perhaps hinting that the interplay of these ignored factors may have a negative net effect on extent and luminosity. We predict that a factor of a few increase in sensitivity from current observational limits should unambiguously reveal continuum-free accretion streams around massive galaxies at z=3.
We present the first spectroscopic measurements of the [OIII] 5007 A line in two z ~ 3.1 Lyman-alpha emitting galaxies (LAEs) using the new near-infrared instrument LUCIFER1 on the 8.4m Large Binocular Telescope (LBT). We also describe the optical imaging and spectroscopic observations used to identify these Lya emitting galaxies. Using the [OIII] line we have measured accurate systemic redshifts for these two galaxies, and discovered a velocity offset between the [OIII] and Ly-alpha lines in both, with the Lya line peaking 342 and 125 km/s redward of the systemic velocity. These velocity offsets imply that there are powerful outflows in high-redshift LAEs. They also ease the transmission of Lya photons through the interstellar medium and intergalactic medium around the galaxies. By measuring these offsets directly, we can refine both Lya-based tests for reionization, and Lya luminosity function measurements where the Lya forest affects the blue wing of the line. Our work also provides the first direct constraints on the strength of the [OIII] line in high-redshift LAEs. We find [OIII] fluxes of 7 and 36 x 10^-17 erg s^-1 cm^-2 in two z ~ 3.1 LAEs. These lines are strong enough to dominate broad-band flux measurements that include the line (in thiscase, K_s band photometry). Spectral energy distribution fits that do not account for the lines would therefore overestimate the 4000 A (and/or Balmer) break strength in such galaxies, and hence also the ages and stellar masses of such high-z galaxies.
We present the results of a high-spatial-resolution study of the line emission in a sample of z=3.1 Lyman-Alpha-Emitting Galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrow-band imaging, two have clear detections and an additional two are barely detected (~2-sigma). The clear detections are within ~0.5 kpc of the centroid of the corresponding rest-UV continuum source, suggesting that the line-emitting gas and young stars in LAEs are spatially coincident. The brightest object exhibits extended emission with a half-light radius of ~1.5 kpc, but a stack of the remaining LAE surface brightness profiles is consistent with the WFPC2 point spread function. This suggests that the Lyman Alpha emission in these objects originates from a compact (<~2 kpc) region and cannot be significantly more extended than the far-UV continuum emission (<~1 kpc). Comparing our WFPC2 photometry to previous ground-based measurements of their monochromatic fluxes, we find at 95% (99.7%) confidence that we cannot be missing more than 22% (32%) of the Lyman Alpha emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا