Do you want to publish a course? Click here

CO ro-vibrational lines in HD100546: A search for disc asymmetries and the role of fluorescence

104   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the emission of CO ro-vibrational lines in the disc around the Herbig Be star HD100546 with the final goal of using these lines as a diagnostic to understand inner disc structure in the context of planet formation. High-resolution IR spectra of CO ro-vibrational emission at eight different position angles were taken with CRIRES at the VLT. From these spectra flux tables, CO ro-vibrational line profiles, and population diagrams were produced. We have investigated variations in the line profile shapes and line strengths as a function of slit position angle. We used the thermochemical disc modelling code ProDiMo based on the chemistry, radiation field, and temperature structure of a previously published model for HD100546. Comparing observations and the model, we investigated the possibility of disc asymmetries, the excitation mechanism (UV fluorescence), the geometry, and physical conditions of the inner disc. The observed CO ro-vibrational lines are largely emitted from the inner rim of the outer disc at 10-13 AU. The line shapes are similar for all v levels and line fluxes from all vibrational levels vary only within one order of magnitude. All line profile asymmetries and variations can be explained with a symmetric disc model to which a slit correction and pointing offset is applied. Because the angular size of the CO emitting region (10-13 AU) and the slit width are comparable the line profiles are very sensitive to the placing of the slit. The model reproduces the line shapes and the fluxes of the v=1-0 lines as well as the spatial extent of the CO ro-vibrational emission. It does not reproduce the observed band ratios of 0.5-0.2 with higher vibrational bands. We find that lower gas volume densities at the surface of the inner rim of the outer disc can make the fluorescence pumping more effcient and reproduce the observed band ratios.



rate research

Read More

We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J<=17). The velocity profiles reveal three distinct components, the strongest and broadest (delta_v > 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ~ 270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (~ 700 K) component, which is highly redshifted (+100 km s-1), is also detected, in addition to a cold (~ 20 K) component centered at the systemic velocity of the galaxy. On the assumption of local thermodynamic equilibrium, the column density of CO in the 270 K component is NCO ~ 4.5 x 10^18 cm-2, which in fully molecular gas corresponds to a H2 column density of NH2 ~ 2.5 x 10^22 cm-2. The thermal excitation of CO up to the observed high rotational levels requires a density greater than nc(H2) > 2 x 10^7 cm-3, implying that the thickness of the warm absorbing layer is extremely small (delta_d < 4 x 10-2 pc) even if it is highly clumped. The large column densities and high radial velocities associated with these warm components, as well as their temperatures, indicate that they originate in molecular clouds near the central engine of the AGN.
We present near-IR spectra of a sample of T Tauri, Herbig Ae/Be, and FU Ori objects. Using the FSPEC instrument on the Bok 90-inch telescope, we obtained K-band spectra with a resolution of ~3500. Here we present spectra of the v=2->0 and v=3->1 bandheads of ro-vibrational transitions of carbon monoxide. We observed these spectra over multiple epochs spaced by a few days and approximately one month. Several of our targets show CO emission or absorption features. However we see little evidence of variability in these features across multiple epochs. We compare our results with previous observations, and discuss the physical implications of non-variable CO emission across the sampled timescales.
Understanding the inner structure of the clumpy molecular torus surrounding the active galactic nucleus is essential in revealing the forming mechanism. However, spatially resolving the torus is difficult because of its size of a few parsecs. Thus, to probe the clump conditions in the torus, we performed the velocity decomposition of the CO ro-vibrational absorption lines ($Delta{v}=0to 1, Delta{J}=pm 1$) at $lambdasim 4.67 mathrm{mu{m}}$ observed toward an ultra-luminous infrared galaxy IRAS 08572+3915 NW with the high-resolution spectroscopy ($Rsim 10000$) of Subaru Telescope. Consequently, we found that each transition had two outflowing components, i.e., (a) and (b), both at approximately $sim -160 mathrm{km s^{-1}}$, but with broad and narrow widths, and an inflowing component, i.e., (c), at approximately $sim +100 mathrm{km s^{-1}}$, which were attributed to the torus. The ratios of the velocity dispersions of each component lead to those of the rotating radii around the black hole of $R_mathrm{rot,a}:R_mathrm{rot,b}:R_mathrm{rot,c}approx 1:5:17$, indicating the torus where clumps are outflowing in the inner regions and inflowing in the outer regions if a hydrostatic disk with $sigma_Vpropto R_mathrm{rot}^{-0.5}$ is assumed. Based on the kinetic temperature of components (a) and (b) of $sim 720 mathrm{K}$ and $sim 25 mathrm{K}$ estimated from the level population, the temperature gradient is $T_mathrm{kin}propto R_mathrm{rot}^{-2.1}$. Magnetohydrodynamic models with large density fluctuations of two orders of magnitude or more are necessary to reproduce this gradient.
197 - D. Fedele 2014
We present multi-epoch high-spectral resolution observations with VLT/CRIRES of the OH doublet $^2Pi_{3/2}$ P4.5 (1+,1-) (2.934 $mu$m) towards the protoplanetary disk around HD 100546. The OH doublet is detected at all epochs and is spectrally resolved while nearby H$_2$O lines remains undetected. The OH line velocity profile is different in the three datasets: in the first epoch (April 2012, PA=26$^{circ}$) the OH lines are symmetric and line broadening is consistent with the gas being in Keplerian rotation around the star. No OH emission is detected within a radius of 8-11 au from the star: the line emitting region is similar in size and extent to that of the CO ro-vibrational lines. In the other two epochs (March 2013 and April 2014, PA=90$^{circ}$ and 10$^{circ}$, respectively) the OH lines appear asymmetric and fainter compared to April 2012. We investigate the origin of these line asymmetries which were taken by previous authors as evidence for tidal interaction between an (unseen) massive planet and the disk. We show that the observed asymmetries can be fully explained by a misalignment of the slit of order 0farcs04-0farcs20 with respect to the stellar position. The disk is spatially resolved and the slit misalignment is likely caused by the extended dust emission which is brighter than the stellar photosphere at near-infrared wavelengths which is the wavelength used for the pointing. This can cause the photo-center of HD 100546 to be mis-aligned with the stellar position at near-infrared wavelengths.
HD 141569 is a Herbig Ae/Be star that straddles the boundary between the transition disks and debris disks. It is a low dust mass disk that reveals numerous structural elements (e.g. gaps and rings) that may point to young planets. It also exhibits a reservoir of CO gas observed at both millimeter and IR wavelengths. Previous observations (Goto et al. 2006) reported a possible asymmetry in the CO gas emission. Herein the IR ro-vibrational emission lines are analyzed and modeled both spectroscopically and spectroastrometrically. We find emission features from both 12CO and 13CO isotopologues heated to a temperature of approximately 200 K in the radial extent of 13 to 60 au. We do not see evidenceof the previously reported asymmetry in CO emission, our results being consistent with a Keplerian, axisymmetric emitting region. This raises the question of whether the emission profile may be evolving in time, possibly as a result of an orbiting feature in the inner disk such as a planet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا