Do you want to publish a course? Click here

Timing variations in the secondary eclipse of NN Ser

122   0   0.0 ( 0 )
 Added by Steven Parsons
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The eclipsing white dwarf plus main-sequence binary NN Serpentis provides one of the most convincing cases for the existence of circumbinary planets around evolved binaries. The exquisite timing precision provided by the deep eclipse of the white dwarf has revealed complex variations in the eclipse arrival times over the last few decades. These variations have been interpreted as the influence of two planets in orbit around the binary. Recent studies have proved that such a system is dynamically stable over the current lifetime of the binary. However, the existence of such planets is by no means proven and several alternative mechanisms have been proposed that could drive similar variations. One of these is apsidal precession, which causes the eclipse times of eccentric binaries to vary sinusoidally on many year timescales. In this paper we present timing data for the secondary eclipse of NN Ser and show that they follow the same trend seen in the primary eclipse times, ruling out apsidal precession as a possible cause for the variations. This result leaves no alternatives to the planetary interpretation for the observed period variations, although we still do not consider their existence as proven. Our data limits the eccentricity of NN Ser to e<0.001. We also detect a 3.3+/-1.0 second delay in the arrival times of the secondary eclipses relative to the best planetary model. This delay is consistent with the expected 2.84+/-0.04 second Romer delay of the binary, and is the first time this effect has been detected in a white dwarf plus M dwarf system.



rate research

Read More

157 - R. Alonso , S. Aigrain , F. Pont 2008
With more than 80 transits observed in the CoRoT light curve with a cadence of 32 s, CoRoT-Exo-2b provides an excellent case to search for the secondary eclipse of the planet, with an expected signal of less than 10^-4 in relative flux. The activity of the star causes a modulation on the flux that makes the detection of this signal challenging. We describe the technique used to seek for the secondary eclipse, that leads to a tentative 2.5 sigma detection of a 5.5x10^-5 eclipse. If the effect of the spots are not taken into account, the times of transit centers will also be affected. They could lead to an erroneous detection of periodic transit timing variations of ~20 s and with a 7.45 d period. By measuring the transit central times at different depths of the transit (transit bisectors), we show that there are no such periodic variations in the CoRoT-Exo-2b O-C residuals larger than ~10 s.
162 - J. H. Steffen 2011
We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASAs Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary ($0.424 pm 0.017 text{M}_odot$) and the orbital parameters of the binary about the central star.
The transiting planet CoRoT-1b is thought to belong to the pM-class of planets, in which the thermal emission dominates in the optical wavelengths. We present a detection of its secondary eclipse in the CoRoT white channel data, whose response function goes from ~400 to ~1000 nm. We used two different filtering approaches, and several methods to evaluate the significance of a detection of the secondary eclipse. We detect a secondary eclipse centered within 20 min at the expected times for a circular orbit, with a depth of 0.016+/-0.006%. The center of the eclipse is translated in a 1-sigma upper limit to the planets eccentricity of ecosomega<0.014. Under the assumption of a zero Bond Albedo and blackbody emission from the planet, it corresponds to a T_{CoRoT}=2330 +120-140 K. We provide the equilibrium temperatures of the planet as a function of the amount of reflected light. If the planet is in thermal equilibrium with the incident flux from the star, our results imply an inefficient transport mechanism of the flux from the day to the night sides.
93 - Ian Dobbs-Dixon , Eric Agol , 2015
We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength dependent variations in the eclipse times of gas-giant planets. A displaced hot-spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot-spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et. al (2006). Here we improve upon their methodology, extend to a broad ranges of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 seconds in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with JWST then currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas-giants.
We report eclipse timing variation analyses of 26 compact hierarchical triple stars comprised of an eccentric eclipsing (inner) binary and a relatively close tertiary component found in the {em Kepler} field. We simultaneously fit the primary and secondary $O-C$ curves of each system for the light-travel time effect (LTTE), as well as dynamical perturbations caused by the tertiary on different timescales. For the first time, we include those contributions of three-body interactions which originate from the eccentric nature of the inner binary. These effects manifest themselves both on the period of the triple system, $P_2$, and on the longer apse-node timescale. We demonstrate that consideration of the dynamically forced rapid apsidal motion yields an efficient and independent tool for the determination of the binary orbits eccentricity and orientation, as well as the 3D configuration of the triple. Modeling the forced apsidal motion also helps to resolve the degeneracy between the shapes of the LTTE and the dynamical delay terms on the $P_2$ timescale, due to the strong dependence of the apsidal motion period on the triples mass ratio. This can lead to the independent determination of the binary and tertiary masses without the need for independent radial velocity measurements. Through the use of our analytic method for fitting $O-C$ curves we have obtained robust solutions for system parameters for the ten most ideal triples of our sample, and only somewhat less robust, but yet acceptable, fits for the remaining systems. Finally we study the results of our 26 system parameter fits via a set of distributions of various physically important parameters, including mutual inclination angle, and mass and period ratios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا