Do you want to publish a course? Click here

Human Mobility and Predictability enriched by Social Phenomena Information (extended abstract)

142   0   0.0 ( 0 )
 Added by Carlos Sarraute
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

The information collected by mobile phone operators can be considered as the most detailed information on human mobility across a large part of the population. The study of the dynamics of human mobility using the collected geolocations of users, and applying it to predict future users locations, has been an active field of research in recent years. In this work, we study the extent to which social phenomena are reflected in mobile phone data, focusing in particular in the cases of urban commute and major sports events. We illustrate how these events are reflected in the data, and show how information about the events can be used to improve predictability in a simple model for a mobile phone users location.



rate research

Read More

A number of recent studies of information diffusion in social media, both empirical and theoretical, have been inspired by viral propagation models derived from epidemiology. These studies model the propagation of memes, i.e., pieces of information, between users in a social network similarly to the way diseases spread in human society. Importantly, one would expect a meme to spread in a social network amongst the people who are interested in the topic of that meme. Yet, the importance of topicality for information diffusion has been less explored in the literature. Here, we study empirical data about two different types of memes (hashtags and URLs) spreading through the Twitters online social network. For every meme, we infer its topics and for every user, we infer her topical interests. To analyze the impact of such topics on the propagation of memes, we introduce a novel theoretical framework of information diffusion. Our analysis identifies two distinct mechanisms, namely topical and non-topical, of information diffusion. The non-topical information diffusion resembles disease spreading as in simple contagion. In contrast, the topical information diffusion happens between users who are topically aligned with the information and has characteristics of complex contagion. Non-topical memes spread broadly among all users and end up being relatively popular. Topical memes spread narrowly among users who have interests topically aligned with them and are diffused more readily after multiple exposures. Our results show that the topicality of memes and users interests are essential for understanding and predicting information diffusion.
Social media sites are information marketplaces, where users produce and consume a wide variety of information and ideas. In these sites, users typically choose their information sources, which in turn determine what specific information they receive, how much information they receive and how quickly this information is shown to them. In this context, a natural question that arises is how efficient are social media users at selecting their information sources. In this work, we propose a computational framework to quantify users efficiency at selecting information sources. Our framework is based on the assumption that the goal of users is to acquire a set of unique pieces of information. To quantify users efficiency, we ask if the user could have acquired the same pieces of information from another set of sources more efficiently. We define three different notions of efficiency -- link, in-flow, and delay -- corresponding to the number of sources the user follows, the amount of (redundant) information she acquires and the delay with which she receives the information. Our definitions of efficiency are general and applicable to any social media system with an underlying information network, in which every user follows others to receive the information they produce. In our experiments, we measure the efficiency of Twitter users at acquiring different types of information. We find that Twitter users exhibit sub-optimal efficiency across the three notions of efficiency, although they tend to be more efficient at acquiring non-popular than popular pieces of information. We then show that this lack of efficiency is a consequence of the triadic closure mechanism by which users typically discover and follow other users in social media. Finally, we develop a heuristic algorithm that enables users to be significantly more efficient at acquiring the same unique pieces of information.
Social structures influence a variety of human behaviors including mobility patterns, but the extent to which one individuals movements can predict anothers remains an open question. Further, latent information about an individuals mobility can be present in the mobility patterns of both social and non-social ties, a distinction that has not yet been addressed. Here we develop a colocation network to distinguish the mobility patterns of an egos social ties from those of non-social colocators, individuals not socially connected to the ego but who nevertheless arrive at a location at the same time as the ego. We apply entropy and predictability measures to analyse and bound the predictive information of an individuals mobility pattern and the flow of that information from their top social ties and from their non-social colocators. While social ties generically provide more information than non-social colocators, we find that significant information is present in the aggregation of non-social colocators: 3-7 colocators can provide as much predictive information as the top social tie, and colocators can replace up to 85% of the predictive information about an ego, compared with social ties that can replace up to 94% of the egos predictability. The presence of predictive information among non-social colocators raises privacy concerns: given the increasing availability of real-time mobility traces from smartphones, individuals sharing data may be providing actionable information not just about their own movements but the movements of others whose data are absent, both known and unknown individuals.
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and the U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographical regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amendable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected peoples travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts varied substantially among states. The strong mobility recovering momentum is further fueled by the Black Lives Matter protests, potentially fostering the second wave of infections in the U.S.
While social interactions are critical to understanding consumer behavior, the relationship between social and commerce networks has not been explored on a large scale. We analyze Taobao, a Chinese consumer marketplace that is the worlds largest e-commerce website. What sets Taobao apart from its competitors is its integrated instant messaging tool, which buyers can use to ask sellers about products or ask other buyers for advice. In our study, we focus on how an individuals commercial transactions are embedded in their social graphs. By studying triads and the directed closure process, we quantify the presence of information passing and gain insights into when different types of links form in the network. Using seller ratings and review information, we then quantify a price of trust. How much will a consumer pay for transaction with a trusted seller? We conclude by modeling this consumer choice problem: if a buyer wishes to purchase a particular product, how does (s)he decide which store to purchase it from? By analyzing the performance of various feature sets in an information retrieval setting, we demonstrate how the social graph factors into understanding consumer behavior.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا