Do you want to publish a course? Click here

Reconstructing the density and temperature structure of prestellar cores from $Herschel$ data: A case study for B68 and L1689B

99   0   0.0 ( 0 )
 Added by Arabindo Roy
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Utilizing multi-wavelength dust emission maps acquired with $Herschel$, we reconstruct local volume density and dust temperature profiles for the prestellar cores B68 and L1689B using inverse-Abel transform based technique. We present intrinsic radial dust temperature profiles of starless cores directly from dust continuum emission maps disentangling the effect of temperature variations along the line of sight which was previously limited to the radiative transfer calculations. The reconstructed dust temperature profiles show a significant drop in core center, a flat inner part, and a rising outward trend until the background cloud temperature is reached. The central beam-averaged dust temperatures obtained for B68 and L1689B are 9.3 $pm$ 0.5 K and 9.8 $pm$0.5 K, respectively, which are lower than the temperatures of 11.3 K and 11.6 K obtained from direct SED fitting. The best mass estimates derived by integrating the volume density profiles of B68 and L1689B are 1.6 M_sol and 11 M_sol, respectively. Comparing our results for B68 with the near-infrared extinction studies, we find that the dust opacity law adopted by the HGBS project, $kappa_{lambda} =0.1(lambda/300 mu m)^{-2}$, agrees to within 50% with the dust extinction constraints



rate research

Read More

(Abriged) In the framework of the Herschel GTKP The earliest phases of star formation, we have imaged B68 between 100 and 500 um. Ancillary (sub)mm data, spectral line maps of the 12/13CO(2-1) transitions as well as a NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from LoS averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent shaped morphology found in the FIR maps. For the first time, we spatially resolve the dust temperature and density distribution of B68. We find T_dust dropping from 16.7 K at the edge to 8.2 K in the centre, which is about 4 K lower than the result of the simple SED fitting approach. N_H peaks at 4.3x10^22 cm^-2 and n_H at 3.4x10^5 cm^-3 in the centre. B68 has a mass of 3.1 M_sun of material with A_K > 0.2 mag for an assumed distance of 150 pc. We detect a compact source in the southeastern trunk, which is also seen in extinction and CO. We find the radial density distribution from the edge of the inner plateau outward to be n_H ~ r^-3.5. Such a steep profile can arise from either or both of the following: external irradiation with a significant UV contribution or the fragmentation of filamentary structures. Our 3D radiative transfer model of an externally irradiated core by an anisotropic ISRF reproduces the crescent morphology. Our CO observations show that B68 is part of a chain of globules in both space and velocity, which may indicate that it was once part of a filament which dispersed. We also resolve a new compact source in the SE trunk and find that it is slightly shifted in centroid velocity from B68, lending qualitative support to core collision scenarios.
Complex organic molecules (COMs) are detected in many regions of the interstellar medium, including prestellar cores. However, their formation mechanisms in cold (~10 K) cores remain to this date poorly understood. The formyl radical HCO is an important candidate precursor for several O-bearing terrestrial COMs in cores, as an abundant building block of many of these molecules. Several chemical routes have been proposed to account for its formation, both on grain surfaces, as an incompletely hydrogenated product of H addition to frozen-out CO molecules, or in the gas phase, either the product of the reaction between H2CO and a radical, or as a product of dissociative recombination of protonated formaldehyde H2COH+. The detection and abundance determination of H2COH+, if present, could provide clues as to whether this latter scenario might apply. We searched for protonated formaldehyde H2COH+ in the prestellar core L1689B using the IRAM 30m telescope. The H2COH+ ion is unambiguously detected, for the first time in a cold (~10 K) source. The derived abundance agrees with a scenario in which the formation of H2COH+ results from the protonation of formaldehyde. We use this abundance value to constrain the branching ratio of the dissociative recombination of H2COH+ towards the HCO channel to ~10-30%. This value could however be smaller if HCO can be efficiently formed from gas-phase neutral-neutral reactions, and we stress the need for laboratory measurements of the rate constants of these reactions at 10 K. Given the experimental difficulties in measuring branching ratios experimentally, observations can bring valuable constraints on these values, and provide a useful input for chemical networks.
117 - N. Schneider 2013
A key parameter to the description of all star formation processes is the density structure of the gas. In this letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until Av 3 (6), and a power-law tail for high column densities, consistent with a rho r^-2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at Av>1 for a subregion in Polaris that includes a prominent filament. We conclude that (i) the point where the PDF deviates from the lognormal form does not trace a universal Av-threshold for star formation, (ii) statistical density fluctuations, intermittency and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (iii) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (iv) external compression broadens the column density PDF, consistent with numerical simulations.
The density and temperature structures of dense cores in the L1495 cloud of the Taurus star-forming region are investigated using Herschel SPIRE and PACS images in the 70 $mu$m, 160 $mu$m, 250 $mu$m, 350 $mu$m and 500 $mu$m continuum bands. A sample consisting of 20 cores, selected using spectral and spatial criteria, is analysed using a new maximum likelihood technique, COREFIT, which takes full account of the instrumental point spread functions. We obtain central dust temperatures, $T_0$, in the range 6-12 K and find that, in the majority of cases, the radial density falloff at large radial distances is consistent with the $r^{-2}$ variation expected for Bonnor-Ebert spheres. Two of our cores exhibit a significantly steeper falloff, however, and since both appear to be gravitationally unstable, such behaviour may have implications for collapse models. We find a strong negative correlation between $T_0$ and peak column density, as expected if the dust is heated predominantly by the interstellar radiation field. At the temperatures we estimate for the core centres, carbon-bearing molecules freeze out as ice mantles on dust grains, and this behaviour is supported here by the lack of correspondence between our estimated core locations and the previously-published positions of H$^{13}$CO$^+$ peaks. On this basis, our observations suggest a sublimation-zone radius typically $sim 10^4$ AU. Comparison with previously-published N$_2$H$^+$ data at 8400 AU resolution, however, shows no evidence for N$_2$H$^+$ depletion at that resolution.
We show Akari data, Herschel data and data from the SCUBA2 camera on JCMT, of molecular clouds. We focus on pre-stellar cores within the clouds. We present Akari data of the L1147-1157 ring in Cepheus and show how the data indicate that the cores are being externally heated. We present SCUBA2 and Herschel data of the Ophiuchus region and show how the environment is also affecting core evolution in this region. We discuss the effects of the magnetic field in the Lupus I region, and how this lends support to a model for the formation and evolution of cores in filamentary molecular clouds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا