Do you want to publish a course? Click here

Optical Spectroscopy and Velocity Dispersions of Galaxy Clusters from the SPT-SZ Survey

137   0   0.0 ( 0 )
 Added by Matthew Bayliss
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zeldovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of $61$ spectroscopic cluster redshifts, and $48$ velocity dispersions each calculated with more than $15$ member galaxies. This catalog also includes $19$ dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies ($lesssim 30$), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a $sim$30% log-normal scatter in dispersion at fixed mass, and a $sim$10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.



rate research

Read More

We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 squ. deg. of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between January 2011 and December 2015, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic dataset and resulting data products, including galaxy redshifts, cluster redshifts and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] 3727,3729 and H-delta, and the 4000A break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically-observed cluster members as a function of brightness (relative to m*). Finally, we report several new measurements of redshifts for ten bright, strongly-lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS dataset with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.
(abridged) We present cosmological constraints obtained from galaxy clusters identified by their Sunyaev-Zeldovich effect signature in the 2500 square degree South Pole Telescope Sunyaev Zeldovich survey. We consider the 377 cluster candidates identified at z>0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a LCDM cosmology, where the species-summed neutrino mass has the minimum allowed value (mnu = 0.06 eV) from neutrino oscillation experiments, we combine the cluster data with a prior on H0 and find sigma_8 = 0.797+-0.031 and Omega_m = 0.289+-0.042, with the parameter combination sigma_8(Omega_m/0.27)^0.3 = 0.784+-0.039. These results are in good agreement with constraints from the CMB from SPT, WMAP, and Planck, as well as with constraints from other cluster datasets. Adding mnu as a free parameter, we find mnu = 0.14+-0.08 eV when combining the SPT cluster data with Planck CMB data and BAO data, consistent with the minimum allowed value. Finally, we consider a cosmology where mnu and N_eff are fixed to the LCDM values, but the dark energy equation of state parameter w is free. Using the SPT cluster data in combination with an H0 prior, we measure w = -1.28+-0.31, a constraint consistent with the LCDM cosmological model and derived from the combination of growth of structure and geometry. When combined with primarily geometrical constraints from Planck CMB, H0, BAO and SNe, adding the SPT cluster data improves the w constraint from the geometrical data alone by 14%, to w = -1.023+-0.042.
149 - L. Old , M. E. Gray , 2013
We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal > 50 at five low redshift snapshots from a semi-analytic model galaxy catalogue, and from a catalogue of SDSS DR8 groups and clusters across the redshift range 0.021<z<0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction. The velocity dispersions and stacked particle velocity distributions of the parent dark matter (DM) halos are compared to the corresponding cluster dispersions and galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of sigma gal / sigma DM = 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocity distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35%, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass-dependent but that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly magnitude-limited sample should be avoided to ensure an unbiased estimate of the velocity dispersion.
We present a detection of the splashback feature around galaxy clusters selected using their Sunyaev-Zeldovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, $r_{rm sp}$, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that $r_{rm sp}$ inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these clusters with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases than optically selected clusters. We find that the measured $r_{rm sp}$ for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters, $r_{rm sp}$ is $sim$ $2sigma$ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogs and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy color, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster.
We present the weak lensing analysis of the Wide-Field Imager SZ Cluster of galaxy (WISCy) sample, a set of 12 clusters of galaxies selected for their Sunyaev-Zeldovich (SZ) effect. After developing new and improved methods for background selection and determination of geometric lensing scaling factors from absolute multi-band photometry in cluster fields, we compare the weak lensing mass estimate with public X-ray and SZ data. We find consistency with hydrostatic X-ray masses with no significant bias, no mass dependent bias and less than 20% intrinsic scatter and constrain fgas,500c=0.128+0.029-0.023. We independently calibrate the South Pole Telescope significance-mass relation and find consistency with previous results. The comparison of weak lensing mass and Planck Compton parameters, whether extracted self-consistently with a mass-observable relation (MOR) or using X-ray prior information on cluster size, shows significant discrepancies. The deviations from the MOR strongly correlate with cluster mass and redshift. This could be explained either by a significantly shallower than expected slope of Compton decrement versus mass and a corresponding problem in the previous X-ray based mass calibration, or a size or redshift dependent bias in SZ signal extraction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا