No Arabic abstract
Let $mathcal{A}={{bf a}_1,ldots,{bf a}_n}subsetBbb{N}^m$. We give an algebraic characterization of the universal Markov basis of the toric ideal $I_{mathcal{A}}$. We show that the Markov complexity of $mathcal{A}={n_1,n_2,n_3}$ is equal to two if $I_{mathcal{A}}$ is complete intersection and equal to three otherwise, answering a question posed by Santos and Sturmfels. We prove that for any $rgeq 2$ there is a unique minimal Markov basis of $mathcal{A}^{(r)}$. Moreover, we prove that for any integer $l$ there exist integers $n_1,n_2,n_3$ such that the Graver complexity of $mathcal{A}$ is greater than $l$.
Computing the complexity of Markov bases is an extremely challenging problem; no formula is known in general and there are very few classes of toric ideals for which the Markov complexity has been computed. A monomial curve $C$ in $mathbb{A}^3$ has Markov complexity $m(C)$ two or three. Two if the monomial curve is complete intersection and three otherwise. Our main result shows that there is no $din mathbb{N}$ such that $m(C)leq d$ for all monomial curves $C$ in $mathbb{A}^4$. The same result is true even if we restrict to complete intersections. We extend this result to all monomial curves in $mathbb{A}^n, ngeq 4$.
Let $k$ be an arbitrary field. In this note, we show that if a sequence of relatively prime positive integers ${bf a}=(a_1,a_2,a_3,a_4)$ defines a Gorenstein non complete intersection monomial curve ${mathcal C}({bf a})$ in ${mathbb A}_k^4$, then there exist two vectors ${bf u}$ and ${bf v}$ such that ${mathcal C}({bf a}+t{bf u})$ and ${mathcal C}({bf a}+t{bf v})$ are also Gorenstein non complete intersection affine monomial curves for almost all $tgeq 0$.
We prove a characterization of the j-multiplicity of a monomial ideal as the normalized volume of a polytopal complex. Our result is an extension of Teissiers volume-theoretic interpretation of the Hilbert-Samuel multiplicity for m-primary monomial ideals. We also give a description of the epsilon-multiplicity of a monomial ideal in terms of the volume of a region.
Scattered over the past few years have been several occurrences of simplicial complexes whose topological behavior characterize the Cohen-Macaulay property for quotients of polynomial rings by arbitrary (not necessarily squarefree) monomial ideals. The purpose of this survey is to gather the developments into one location, with self-contained proofs, including direct combinatorial topological connections between them.
Independent sets play a key role into the study of graphs and important problems arising in graph theory reduce to them. We define the monomial ideal of independent sets associated to a finite simple graph and describe its homological and algebraic invariants in terms of the combinatorics of the graph. We compute the minimal primary decomposition and characterize the Cohen--Macaulay ideals. Moreover, we provide a formula for computing the Betti numbers, which depends only on the coefficients of the independence polynomial of the graph.