Do you want to publish a course? Click here

HS06 Benchmark for an ARM Server

145   0   0.0 ( 0 )
 Added by Stefan Kluth
 Publication date 2013
and research's language is English
 Authors Stefan Kluth




Ask ChatGPT about the research

We benchmarked an ARM cortex-A9 based server system with a four-core CPU running at 1.1 GHz. The system used Ubuntu 12.04 as operating system and the HEPSPEC 2006 (HS06) benchmarking suite was compiled natively with gcc-4.4 on the system. The benchmark was run for various settings of the relevant gcc compiler options. We did not find significant influence from the compiler options on the benchmark result. The final HS06 benchmark result is 10.4.



rate research

Read More

To keep up with demand, servers will scale up to handle hundreds of thousands of clients simultaneously. Much of the focus of the community has been on scaling servers in terms of aggregate traffic intensity (packets transmitted per second). However, bottlenecks caused by the increasing number of concurrent clients, resulting in a large number of concurrent flows, have received little attention. In this work, we focus on identifying such bottlenecks. In particular, we define two broad categories of problems; namely, admitting more packets into the network stack than can be handled efficiently, and increasing per-packet overhead within the stack. We show that these problems contribute to high CPU usage and network performance degradation in terms of aggregate throughput and RTT. Our measurement and analysis are performed in the context of the Linux networking stack, the the most widely used publicly available networking stack. Further, we discuss the relevance of our findings to other network stacks. The goal of our work is to highlight considerations required in the design of future networking stacks to enable efficient handling of large numbers of clients and flows.
Machine learning (ML) needs industry-standard performance benchmarks to support design and competitive evaluation of the many emerging software and hardware solutions for ML. But ML training presents three unique benchmarking challenges absent from other domains: optimizations that improve training throughput can increase the time to solution, training is stochastic and time to solution exhibits high variance, and software and hardware systems are so diverse that fair benchmarking with the same binary, code, and even hyperparameters is difficult. We therefore present MLPerf, an ML benchmark that overcomes these challenges. Our analysis quantitatively evaluates MLPerfs efficacy at driving performance and scalability improvements across two rounds of results from multiple vendors.
Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnitude in power consumption and five orders of magnitude in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. In this paper, we present our benchmarking method for evaluating ML inference systems. Driven by more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf prescribes a set of rules and best practices to ensure comparability across systems with wildly differing architectures. The first call for submissions garnered more than 600 reproducible inference-performance measurements from 14 organizations, representing over 30 systems that showcase a wide range of capabilities. The submissions attest to the benchmarks flexibility and adaptability.
Edge computing has been developed to utilize multiple tiers of resources for privacy, cost and Quality of Service (QoS) reasons. Edge workloads have the characteristics of data-driven and latency-sensitive. Because of this, edge systems have developed to be both heterogeneous and distributed. The unique characteristics of edge workloads and edge systems have motivated EdgeBench, a workflow-based benchmark aims to provide the ability to explore the full design space of edge workloads and edge systems. EdgeBench is both customizable and representative. It allows users to customize the workflow logic of edge workloads, the data storage backends, and the distribution of the individual workflow stages to different computing tiers. To illustrate the usability of EdgeBench, we also implements two representative edge workflows, a video analytics workflow and an IoT hub workflow that represents two distinct but common edge workloads. Both workflows are evaluated using the workflow-level and function-level metrics reported by EdgeBench to illustrate both the performance bottlenecks of the edge systems and the edge workloads.
The Linked Data Benchmark Councils Social Network Benchmark (LDBC SNB) is an effort intended to test various functionalities of systems used for graph-like data management. For this, LDBC SNB uses the recognizable scenario of operating a social network, characterized by its graph-shaped data. LDBC SNB consists of two workloads that focus on different functionalities: the Interactive workload (interactive transactional queries) and the Business Intelligence workload (analytical queries). This document contains the definition of the Interactive Workload and the first draft of the Business Intelligence Workload. This includes a detailed explanation of the data used in the LDBC SNB benchmark, a detailed description for all queries, and instructions on how to generate the data and run the benchmark with the provided software.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا