Do you want to publish a course? Click here

Wave dispersion in the hybrid-Vlasov model: verification of Vlasiator

145   0   0.0 ( 0 )
 Added by Yann Kempf
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Vlasiator is a new hybrid-Vlasov plasma simulation code aimed at simulating the entire magnetosphere of the Earth. The code treats ions (protons) kinetically through Vlasovs equation in the six-dimensional phase space while electrons are a massless charge-neutralizing fluid [M. Palmroth et al., Journal of Atmospheric and Solar-Terrestrial Physics 99, 41 (2013); A. Sandroos et al., Parallel Computing 39, 306 (2013)]. For first global simulations of the magnetosphere, it is critical to verify and validate the model by established methods. Here, as part of the verification of Vlasiator, we characterize the low-$beta$ plasma wave modes described by this model and compare with the solution computed by the Waves in Homogeneous, Anisotropic Multicomponent Plasmas (WHAMP) code [K. Ronnmark, Kiruna Geophysical Institute Reports 179 (1982)], using dispersion curves and surfaces produced with both programs. The match between the two fundamentally different approaches is excellent in the low-frequency, long wavelength range which is of interest in global magnetospheric simulations. The left-hand and right-hand polarized wave modes as well as the Bernstein modes in the Vlasiator simulations agree well with the WHAMP solutions. Vlasiator allows a direct investigation of the importance of the Hall term by including it in or excluding it from Ohms law in simulations. This is illustrated showing examples of waves obtained using the ideal Ohms law and Ohms law including the Hall term. Our analysis emphasizes the role of the Hall term in Ohms law in obtaining wave modes departing from ideal magnetohydrodynamics in the hybrid-Vlasov model.



rate research

Read More

110 - O. Pezzi , Y. Yang , F. Valentini 2019
Kinetic simulations based on the Eulerian Hybrid Vlasov-Maxwell (HVM) formalism permit the examination of plasma turbulence with useful resolution of the proton velocity distribution function (VDF). The HVM model is employed here to study the balance of energy, focusing on channels of conversion that lead to proton kinetic effects, including growth of internal energy and temperature anisotropies. We show that this Eulerian simulation approach, which is almost noise-free, is able to provide an accurate energy balance for protons. The results demonstrate explicitly that the recovered temperature growth is directly related to the role of the pressure-strain interaction. Furthermore, analysis of local spatial correlations indicates that the pressure-strain interaction is qualitatively associated with strong-current, high-vorticity structures, although other local terms -- such as the heat flux -- weaken the correlation. These numerical capabilities based on the Eulerian approach will enable deeper study of transfer and conversion channels in weakly collisional Vlasov plasmas.
Different variants of hybrid kinetic-fluid models are considered for describing the interaction of a bulk fluid plasma obeying MHD and an energetic component obeying a kinetic theory. Upon using the Vlasov kinetic theory for energetic particles, two planar Vlasov-MHD models are compared in terms of their stability properties. This is made possible by the Hamiltonian structures underlying the considered hybrid systems, whose infinite number of invariants makes the energy-Casimir method effective for determining stability. Equilibrium equations for the models are obtained from a variational principle and in particular a generalized hybrid Grad-Shafranov equation follows for one of the considered models. The stability conditions are then derived and discussed with particular emphasis on kinetic particle effects on classical MHD stability.
Density inhomogeneities are ubiquitous in space and astrophysical plasmas, in particular at contact boundaries between different media. They often correspond to regions that exhibits strong dynamics on a wide range of spatial and temporal scales. Indeed, density inhomogeneities are a source of free energy that can drive various instabilities such as, for instance, the lower-hybrid-drift instability which in turn transfers energy to the particles through wave-particle interactions and eventually heat the plasma. We aim at quantifying the efficiency of the lower-hybrid-drift instability to accelerate and/or heat electrons parallel to the ambient magnetic field. We combine two complementary methods: full-kinetic and quasilinear models. We report self-consistent evidence of electron acceleration driven by the development of the lower-hybrid-drift instability using 3D-3V full-kinetic numerical simulations. The efficiency of the observed acceleration cannot be explained by standard quasilinear theory. For this reason, we develop an extended quasilinear model able to quantitatively predict the interaction between lower-hybrid fluctuations and electrons on long time scales, now in agreement with full-kinetic simulations results. Finally, we apply this new, extended quasilinear model to a specific inhomogeneous space plasma boundary: the magnetopause of Mercury, and we discuss our quantitative predictions of electron acceleration in support to future BepiColombo observations.
Incoherent radar scatter from the ionosphere will, for equilibrium conditions, show two symmetric ion-acoustic lines, one for each direction of wave propagation. Many observation, from the EISCAT Svalbard Radar (ESR) for instance, demonstrate that the symmetry of this ion line can be broken, accompanied by an enhanced, nonthermal, level of fluctuations, i.e., Naturally Enhanced Ion-Acoustic Lines (NEIALs). Several models have been proposed for explaining these naturally enhanced lines. Here, we consider one of these, suggesting that decay of electron beam excited Langmuir waves gives rise to enhanced asymmetric ion lines in the ionosphere. We use a weak-turbulence approximation, and identify crucial parameters for Langmuir decay processes to be effective in generating the observed signals.
105 - C. S. Ng 2019
Electrostatic structures have been observed in many regions of space plasmas, including the solar wind, the magnetosphere, the auroral acceleration region. One possible theoretical description of some of these structures is the concept of Bernstein-Greene-Kruskal (BGK) modes, which are exact nonlinear steady-state solutions of the Vlasov-Poisson system of equations in collisionless kinetic theory. We generalize exact solutions of two-dimensional BGK modes in a magnetized plasma with finite magnetic field strength [Ng, Bhattacharjee, and Skiff, Phys. Plasmas {bf13}, 055903 (2006)] to cases with azimuthal magnetic fields so that these structures carry electric current as well as steady electric and magnetic fields. Such nonlinear solutions now satisfy exactly the Vlasov-Poisson-Amp`{e}re system of equations. Explicit examples with either positive or negative electric potential structure are provided.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا