A dissipative sandpile model (DSM) is constructed and studied on small world networks (SWN). SWNs are generated adding extra links between two arbitrary sites of a two dimensional square lattice with different shortcut densities $phi$. Three different regimes are identified as regular lattice (RL) for $philesssim 2^{-12}$, SWN for $2^{-12}<phi< 0.1$ and random network (RN) for $phige 0.1$. In the RL regime, the sandpile dynamics is characterized by usual Bak, Tang, Weisenfeld (BTW) type correlated scaling whereas in the RN regime it is characterized by the mean field (MF) scaling. On SWN, both the scaling behaviors are found to coexist. Small compact avalanches below certain characteristic size $s_c$ are found to belong to the BTW universality class whereas large, sparse avalanches above $s_c$ are found to belong to the MF universality class. A scaling theory for the coexistence of two scaling forms on SWN is developed and numerically verified. Though finite size scaling (FSS) is not valid for DSM on RL as well as on SWN, it is found to be valid on RN for the same model. FSS on RN is appeared to be an outcome of super diffusive sand transport and uncorrelated toppling waves.