Do you want to publish a course? Click here

TeV gamma-ray survey of the Northern sky using the ARGO-YBJ detector

113   0   0.0 ( 0 )
 Added by Songzhan Chen
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ARGO-YBJ detector is an extensive air shower array that has been used to monitor the northern $gamma$-ray sky at energies above 0.3 TeV from 2007 November to 2013 January. In this paper, we present the results of a sky survey in the declination band from $-10^{circ}$ to $70^{circ}$, using data recorded over the past five years. With an integrated sensitivity ranging from 0.24 to $sim$1 Crab units depending on the declination, six sources have been detected with a statistical significance greater than 5 standard deviations. Several excesses are also reported as potential $gamma$-ray emitters. The features of each source are presented and discussed. Additionally, $95%$ confidence level upper limits of the flux from the investigated sky region are shown. Specific upper limits for 663 GeV $gamma$-ray AGNs inside the ARGO-YBJ field of view are reported. The effect of the absorption of $gamma$-rays due to the interaction with extragalactic background light is estimated.



rate research

Read More

We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1-100 GeV in coincidence with the prompt emission detected by satellites using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) air shower detector. Thanks to its mountain location (Yangbajing, Tibet, P.R. China, 4300 m a.s.l.), active surface (about 6700 m**2 of Resistive Plate Chambers), and large field of view (about 2 sr, limited only by the atmospheric absorption), the ARGO-YBJ air shower detector is particularly suitable for the detection of unpredictable and short duration events such as GRBs. The search is carried out using the single particle technique, i.e. counting all the particles hitting the detector without measurement of the energy and arrival direction of the primary gamma rays. Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites occurred within the field of view of ARGO-YBJ (zenith angle < 45 deg). It was possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data finding no statistically significant emission. With a lack of detected spectra in this energy range fluence upper limits are profitable, especially when the redshift is known and the correction for the extragalactic absorption can be considered. The obtained fluence upper limits reach values as low as 10**{-5} erg cm**{-2} in the 1-100 GeV energy region. Besides this individual search for a higher energy counterpart, a statistical study of the stack of all the GRBs both in time and in phase was made, looking for a common feature in the GRB high energy emission. No significant signal has been detected.
The ARGO-YBJ detector, located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China), was a full coverage air shower array dedicated to gamma ray astronomy and cosmic ray studies. The wide field of view (~ 2 sr) and high duty cycle (> 86%), made ARGO-YBJ suitable to search for short and unexpected gamma ray emissions like gamma ray bursts (GRBs). Between 2007 November 6 and 2013 February 7, 156 satellite-triggered GRBs (24 of them with known redshift) occurred within the ARGO-YBJ field of view. A search for possible emission associated to these GRBs has been made in the two energy ranges 10-100 GeV and 10-1000 GeV. No significant excess has been found in time coincidence with the satellite detections nor in a time window of one hour after the bursts. Taking into account the EBL absorption, upper limits to the energy fluence at 99% of confidence level have been evaluated,with values ranging from ~ 10-5 erg cm-2 to ~10-1 erg cm-2.
We report the observation of TeV gamma-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) gamma-ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.
The search for Gamma Ray Burst (GRB) emission in the energy range 1-100 GeV in coincidence with the satellite detection has been carried out using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) experiment. The high altitude location (4300 m a.s.l.), the large active surface ($sim$ 6700 m$^2$ of Resistive Plate Chambers), the wide field of view ($sim 2~$sr, limited only by the atmospheric absorption) and the high duty cycle ($>$ 86 %) make the ARGO-YBJ experiment particularly suitable to detect short and unexpected events like GRBs. With the scaler mode technique, i.e., counting all the particles hitting the detector with no measurement of the primary energy and arrival direction, the minimum threshold of $sim$ 1 GeV can be reached, overlapping the direct measurements carried out by satellites. During the experiment lifetime, from December 17, 2004 to February 7, 2013, a total of 206 GRBs occurring within the ARGO-YBJ field of view (zenith angle $theta$ $le$ 45$^{circ}$) have been analyzed. This is the largest sample of GRBs investigated with a ground-based detector. Two lightcurve models have been assumed and since in both cases no significant excess has been found, the corresponding fluence upper limits in the 1-100 GeV energy region have been derived, with values as low as 10$^{-5}~$erg cm$^{-2}$. The analysis of a subset of 24 GRBs with known redshift has been used to constrain the fluence extrapolation to the GeV region together with possible cutoffs under different assumptions on the spectrum.
This paper reports on the observation of the sidereal large-scale anisotropy of cosmic rays using data collected by the ARGO-YBJ experiment over 5 years (2008$-$2012). This analysis extends previous work limited to the period from 2008 January to 2009 December,near the minimum of solar activity between cycles 23 and 24.With the new data sample the period of solar cycle 24 from near minimum to maximum is investigated. A new method is used to improve the energy reconstruction, allowing us to cover a much wider energy range, from 4 to 520 TeV. Below 100 TeV, the anisotropy is dominated by two wide regions, the so-called tail-in and loss-cone features. At higher energies, a dramatic change of the morphology is confirmed. The yearly time dependence of the anisotropy is investigated. Finally, no noticeable variation of cosmic-ray anisotropy with solar activity is observed for a median energy of 7 TeV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا