Do you want to publish a course? Click here

Black hole mass estimates and emission-line properties of a sample of redshift z>6.5 quasars

140   0   0.0 ( 0 )
 Added by Gisella De Rosa
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the analysis of optical and near-infrared spectra of the only four $z>6.5$ quasars known to date, discovered in the UKIDSS-LAS and VISTA-VIKING surveys. Our data-set consists of new VLT/X-Shooter and Magellan/FIRE observations. These are the best optical/NIR spectroscopic data that are likely to be obtained for the $z>6.5$ sample using current $6$ - $10$ m facilities. We estimate the black hole mass, the Eddington ratio, and the SiIV/CIV, CIII]/CIV, and FeII/MgII emission-line flux ratios. We perform spectral modeling using a procedure that allows us to derive a probability distribution for the continuum components and to obtain the quasar properties weighted upon the underlying distribution of continuum models. The $z>6.5$ quasars show the same emission properties as their counterparts at lower redshifts. The $z>6.5$ quasars host black holes with masses of $sim 10^9$ M$_{odot}$ that are accreting close to the Eddington luminosity ($langle{rm log} (L_{rm Bol}/L_{rm Edd})rangle= -0.4pm0.2$), in agreement with what has been observed for a sample of $4.0<z<6.5$ quasars. By comparing the SiIV/CIV and CIII]/CIV flux ratios with the results obtained from luminosity-matched samples at $zsim6$ and $2leq zleq4.5$, we find no evidence of evolution of the line ratios with cosmic time. We compare the measured FeII/MgII flux ratios with those obtained for a sample of $4.0<z<6.4$ sources. The two samples are analyzed using a consistent procedure. There is no evidence that the FeII/MgII flux ratio evolves between $z=7$ and $z=4$. Under the assumption that the FeII/MgII traces the Fe/Mg abundance ratio, this implies the presence of major episodes of chemical enrichment in the quasar hosts in the first $sim0.8$ Gyr after the Big Bang.



rate research

Read More

We have selected a complete sample of flat-spectrum radio quasars (FSRQs) from the WMAP 7-yr catalog within the SDSS area, all with measured redshift, and have compared the black hole mass estimates based on fitting a standard accretion disk model to the `blue bump with those obtained from the commonly used single epoch virial method. The sample comprises 79 objects with a flux density limit of 1 Jy at 23 GHz, 54 of which (68%) have a clearly detected `blue bump. Thirty-four of the latter have, in the literature, black hole mass estimates obtained with the virial method. The mass estimates obtained from the two methods are well correlated. If the calibration factor of the virial relation is set to $f=4.5$, well within the range of recent estimates, the mean logarithmic ratio of the two mass estimates is equal to zero with a dispersion close to the estimated uncertainty of the virial method. The fact that the two independent methods agree so closely in spite of the potentially large uncertainties associated with each lends strong support to both of them. The distribution of black-hole masses for the 54 FSRQs in our sample with a well detected blue bump has a median value of $7.4times 10^{8},M_odot$. It declines at the low mass end, consistent with other indications that radio loud AGNs are generally associated with the most massive black holes, although the decline may be, at least partly, due to the source selection. The distribution drops above $log(M_bullet/M_odot) = 9.4$, implying that ultra-massive black holes associated with FSRQs must be rare.
We report the results from a search for z > 6.5 quasars using the Dark Energy Survey (DES) Year 3 dataset combined with the VISTA Hemisphere Survey (VHS) and WISE All-Sky Survey. Our photometric selection method is shown to be highly efficient in identifying clean samples of high-redshift quasars leading to spectroscopic confirmation of three new quasars - VDESJ 0244-5008 (z=6.724), VDESJ 0020-3653 (z=6.834) and VDESJ 0246-5219 (z=6.90) - which were selected as the highest priority candidates in the survey data without any need for additional follow-up observations. The new quasars span the full range in luminosity covered by other z>6.5 quasar samples (J AB = 20.2 to 21.3; M1450 = -25.6 to -26.6). We have obtained spectroscopic observations in the near infrared for VDESJ 0244-5008 and VDESJ 0020-3653 as well as our previously identified quasar, VDESJ 0224-4711 at z=6.50 from Reed et al. (2017). We use the near infrared spectra to derive virial black-hole masses from the full-width-half-maximum of the MgII line. These black-hole masses are ~ 1 - 2 x 10$^9$M$_odot$. Combining with the bolometric luminosities of these quasars of L$_{rm{bol}}simeq$ 1 - 3 x 10$^{47}$implies that the Eddington ratios are high - $simeq$0.6-1.1. We consider the Ctextrm{textsc{IV}} emission line properties of the sample and demonstrate that our high-redshift quasars do not have unusual Ctextrm{textsc{IV}} line properties when compared to carefully matched low-redshift samples. Our new DES+VHS $z>6.5$ quasars now add to the growing census of luminous, rapidly accreting supermassive black-holes seen well into the epoch of reionisation.
We present the results of high signal-to-noise ratio VLT spectropolarimetry of a representative sample of 25 bright type 1 AGN at z<0.37, of which nine are radio-loud. The sample covers uniformly the 5100 A optical luminosity at $L_{5100}sim 10^{44}-10^{46}$ erg s$^{-1}$, and H$alpha$ width at FWHM$sim 1000-10,000$~ km/s. We derive the continuum and the H$alpha$ polarization amplitude, polarization angle, and angle swing across the line, together with the radio properties. We find the following: 1. The broad line region (BLR) and continuum polarization are both produced by a single scattering medium. 2. The scattering medium is equatorial, and at right angle to the system axis. 3. The scattering medium is located at or just outside the BLR. The continuum polarization and the H$alpha$ polarization angle swing, can both serve as an inclination indicator. The observed line width is found to be affected by inclination, which can lead to an underestimate of the black hole mass by a factor of $sim 5$ for a close-to face-on view. The line width measured in the polarized flux overcomes the inclination bias, and provides a close-to equatorial view of the BLR in all AGN, which allows to reduce the inclination bias in the BLR based black hole mass estimates.
The inter-line comparison between high- and low-ionization emission lines has yielded a wealth of information on the quasar broad line region (BLR) structure and dynamics, including perhaps the earliest unambiguous evidence in favor of a disk + wind structure in radio-quiet quasars. We carried out an analysis of the CIV 1549 and Hbeta line profiles of 28 Hamburg-ESO high luminosity quasars and of 48 low-z, low luminosity sources in order to test whether the high-ionization line CIV 1549 width could be correlated with Hbeta and be used as a virial broadening estimator. We analyze intermediate- to high-S/N, moderate resolution optical and NIR spectra covering the redshifted CIV and H$beta$ over a broad range of luminosity log L ~ 44 - 48.5 [erg/s] and redshift (0 - 3), following an approach based on the quasar main sequence. The present analysis indicates that the line width of CIV 1549 is not immediately offering a virial broadening estimator equivalent to H$beta$. At the same time a virialized part of the BLR appears to be preserved even at the highest luminosities. We suggest a correction to FWHM(CIV) for Eddington ratio (using the CIV blueshift as a proxy) and luminosity effects that can be applied over more than four dex in luminosity. Great care should be used in estimating high-L black hole masses from CIV 1549 line width. However, once corrected FWHM(CIV) values are used, a CIV-based scaling law can yield unbiased MBH values with respect to the ones based on H$beta$ with sample standard deviation ~ 0.3 dex.
We present the results of a new, deeper, and complete search for high-redshift $6.5<z<9.3$ quasars over 977deg$^2$ of the VISTA Kilo-Degree Infrared Galaxy (VIKING) survey. This exploits a new list-driven dataset providing photometry in all bands ZYJHKs, for all sources detected by VIKING in $J$. We use the Bayesian model comparison (BMC) selection method of Mortlock et al., producing a ranked list of just 21 candidates. The sources ranked 1, 2, 3 and 5 are the four known $z>6.5$ quasars in this field. Additional observations of the other 17 candidates, primarily DESI Legacy Survey photometry and ESO FORS2 spectroscopy, confirm that none is a quasar. This is the first complete sample from the VIKING survey, and we provide the computed selection function. We include a detailed comparison of the BMC method against two other selection methods: colour cuts and minimum-$chi^2$ SED fitting. We find that: i) BMC produces eight times fewer false positives than colour cuts, while also reaching 0.3 mag. deeper, ii) the minimum-$chi^2$ SED fitting method is extremely efficient but reaches 0.7 mag. less deep than the BMC method, and selects only one of the four known quasars. We show that BMC candidates, rejected because their photometric SEDs have high $chi^2$ values, include bright examples of galaxies with very strong [OIII]$lambdalambda$4959,5007 emission in the $Y$ band, identified in fainter surveys by Matsuoka et al. This is a potential contaminant population in Euclid searches for faint $z>7$ quasars, not previously accounted for, and that requires better characterisation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا