Do you want to publish a course? Click here

H.E.S.S. Observations of the Crab during its March 2013 GeV Gamma-Ray Flare

155   0   0.0 ( 0 )
 Added by Kornelia Stycz
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. On March 4, 2013, the Fermi-LAT and AGILE reported a flare from the direction of the Crab Nebula in which the high-energy (HE; E > 100 MeV) flux was six times above its quiescent level. Simultaneous observations in other energy bands give us hints about the emission processes during the flare episode and the physics of pulsar wind nebulae in general. Aims. We search for variability of the emission of the Crab Nebula at very-high energies (VHE; E > 100 GeV), using contemporaneous data taken with the H.E.S.S. array of Cherenkov telescopes. Methods. Observational data taken with the H.E.S.S. instrument on five consecutive days during the flare were analysed concerning the flux and spectral shape of the emission from the Crab Nebula. Night-wise light curves are presented with energy thresholds of 1 TeV and 5 TeV. Results. The observations conducted with H.E.S.S. on 2013 March 6 to March 10 show no significant changes in the flux. They limit the variation on the integral flux above 1 TeV to less than 63% and the integral flux above 5 TeV to less than 78% at a 95% confidence level.



rate research

Read More

321 - M. Mayer , R. Buehler , E. Hays 2013
We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately 2 weeks. During this period, we observed flux variability on timescales of approximately 5,hours. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of $(12.5pm 0.8)cdot 10^{-6}$,cm$^{-2}$,s$^{-1}$ on 2013 March 6. This value exceeds the average flux by almost a factor of 6 and implies a $sim20$ times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time.
In March 2013, a flaring episode from the Crab Nebula lasting ~2 weeks was detected by the Fermi-LAT (Large Area Telescope on board the Fermi Gamma-ray Space Telescope). VERITAS provides simultaneous observations throughout this period. During the flare, the Fermi-LAT detected a 20-fold increase in flux above the average synchrotron flux >100 MeV seen from the Crab Nebula. Simultaneous measurements with VERITAS are consistent with the non-variable long-term average Crab Nebula flux at TeV energies. Assuming a linear correlation between the very-high-energy flux change >1 TeV and the flux change seen in the Fermi-LAT band >100 MeV during the period of simultaneous observations, the linear correlation factor can be constrained to be at most 8.6 * 10^-3 with 95% confidence.
We present results from our analysis of Chandra X-ray Observatory, W. M. Keck Observatory, and Karl G. Jansky Very Large Array (VLA) images of the Crab Nebula that were contemporaneous with the gamma-ray flare of 2011 April. Despite hints in the X-ray data, we find no evidence for statistically significant variations that pinpoint the specific location of the flares within the Nebula. The Keck observations extend this conclusion to the inner knot, i.e., the feature within an arcsecond of the pulsar. The VLA observations support this conclusion. We also discuss theoretical implications of the gamma-ray flares and suggest that the most dramatic gamma-ray flares are due to radiation-reaction-limited synchrotron emission associated with sudden, dissipative changes in the current system sustained by the central pulsar.
We report on the MAXI GSC X-ray monitoring of the Crab nebula and pulsar during the GeV gamma-ray flare for the period of 2010 September 18-24 (MJD 55457-55463) detected by AGILE and Fermi-LAT. There were no significant variations on the pulse phase averaged and pulsed fluxes during the gamma-ray flare on time scales from 0.5 to 5 days. The pulse profile also showed no significant change during this period. The upper limits on the variations of the pulse phase averaged and pulsed fluxes for the period MJD 55457.5-55462.5 in the 4-10 keV band are derived to be 1 and 19%, respectively, at the 90% confidence limit of the statistical uncertainty. The lack of variations in the pulsed component over the multi-wavelength range (radio, X-ray, hard X-ray, and gamma-ray) supports not the pulsar but the nebular origin for the gamma-ray flare.
In this paper, we present results of TeV $gamma$--ray observations of the high synchrotron peaked BL Lac object 1ES 1218+304 (z=0.182) with the $TACTIC$ (TeV Atmospheric Cherenkov Telescope with Imaging Camera). The observations are primarily motivated by the unusually hard GeV-TeV spectrum of the source despite its relatively large redshift. The source is observed in the TeV energy range with the $TACTIC$ from March 1, 2013 to April 15, 2013 (MJD 56352--56397) for a total observation time of 39.62 h and no evidence of TeV $gamma$--ray activity is found from the source. The corresponding 99$%$ confidence level upper limit on the integral flux above a threshold energy of 1.1 TeV is estimated to be 3.41 $times10^{-12}$ photons cm$^{-2}$ s$^{-1}$ (i.e $<23%$ Crab Nebula flux) assuming a power law differential energy spectrum with photon index 3.0, as previously observed by the $MAGIC$ and $VERITAS$ telescopes. For the study of multi-wavelength emission from the source, we use nearly simultaneous optical, UV and and X--ray data collected by the UVOT and XRT instruments on board the emph{Swift} satellite and high energy $gamma$--ray data collected by the Large Area Telescope on board the emph{Fermi} satellite. We also use radio data at 15 GHz from OVRO 40 m telescope in the same period. No significant increase of activity is detected from radio to TeV $gamma$--rays from 1ES1218+304 during the period from March 1, 2013 to April 15, 2013.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا