Do you want to publish a course? Click here

Chiral behaviour of the pion decay constant in $N_f=2$ QCD

94   0   0.0 ( 0 )
 Added by Stefano Lottini Dr.
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

As increased statistics and new ensembles with light pions have become available within the CLS effort, we complete previous work by inspecting the chiral behaviour of the pion decay constant. We discuss the validity of Chiral Perturbation Theory ($chi$PT) and examine the results concerning the pion decay constant and the ensuing scale setting, the pion mass squared in units of the quark mass, and the ratio of decay constants $f_K/f_pi$; along the way, the relevant low-energy constants of SU(2) $chi$PT are estimated. All simulations were performed with two dynamical flavours of nonperturbatively O(a)-improved Wilson fermions, on volumes with $m_pi L geq 4$, pion masses $geq$ 192 MeV and lattice spacings down to 0.048 fm. Our error analysis takes into account the effect of slow modes on the autocorrelations.



rate research

Read More

We present a non-perturbative calculation for the pion decay constant with quenched Kogut-Susskind quarks. Numerical simulations are carried out at $beta = 6.0$ and 6.2 with various operators extending over all flavors. The renormalization correction is applied for each flavor by computing non-perturbative renormalization constants, and it is compared with a perturbative calculation. We also study the behavior of $f_pi$ in the continuum limits for both non-perturbative and perturbative calculations. The results in the continuum limit is also discussed.
We present the first-ever lattice computation of pi pi-scattering in the I=1 channel with Nf=2 dynamical quark flavours obtained including an ensemble with physical value of the pion mass. Employing a global fit to data at three values of the pion mass, we determine the universal parameters of the rho-resonance. We carefully investigate systematic uncertainties by determining energy eigenvalues using different methods and by comparing inverse amplitude method and Breit-Wigner type parametrizations. Overall, we find mass 786(20) MeV and width 180(6) MeV, including statistical and systematic uncertainties. In stark disagreement with the previous Nf=2 extrapolations from higher than physical pion mass results, our mass value is in good agreement with experiment, while the width is slightly too high.
We present a study for the pion decay constant $f_pi$ in the quenched approximation to lattice QCD with the Kogut-Susskind (KS) quark action, with the emphasis given to the renormalization problems. Numerical simulations are carried out at the couplings $beta = 6.0$ and 6.2 on $32^3times 64$ and $48^3times 64$ lattices, respectively. The pion decay constant is evaluated for all KS flavors via gauge invariant and non-invariant axial vector currents with the renormalization constants calculated by both non-perturbative method and perturbation theory. We obtain $f_pi = 89(6)$ MeV in the continuum limit as the best value using the partially conserved axial vector current, which requires no renormalization. From a study for the other KS flavors we find that the results obtained with the non-perturbative renormalization constants are well convergent among the KS flavors in the continuum limit, confirming restoration of $rm SU(4)_A$ flavor symmetry, while perturbative renormalization still leaves an apparent flavor breaking effect even in the continuum limit.
The chirally improved (CI) fermion action allows us to obtain results for pion masses down to 320 MeV on (in lattice units) comparatively small lattices with physical extent of 2.4 fm. We use differently smeared quarks sources to build sets of several interpolators. The variational method then leads to excellent ground state masses for most mesons and baryons. The excited state signals weaken in quality towards smaller quark masses. In particular the excited baryons come out too high.
The masses and decay constants of pseudoscalar mesons $ D $, $ D_s $, and $ K $ are determined in quenched lattice QCD with exact chiral symmetry. For 100 gauge configurations generated with single-plaquette action at $ beta = 6.1 $ on the $ 20^3 times 40 $ lattice, we compute point-to-point quark propagators for 30 quark masses in the range $ 0.03 le m_q a le 0.80 $, and measure the time-correlation functions of pseudoscalar and vector mesons. The inverse lattice spacing $ a^{-1} $ is determined with the experimental input of $ f_pi $, while the strange quark bare mass ($ m_s a = 0.08 $), and the charm quark bare mass ($ m_c a = 0.80 $) are fixed such that the masses of the corresponding vector mesons are in good agreement with $ phi(1020) $ and $ J/psi(3097) $ respectively. Our results of pseudoscalar-meson decay constant are: $ f_K = 152(6)(10) $ MeV, $ f_D = 235(8)(14)$ MeV, and $ f_{D_s} = 266(10)(18) $ MeV [hep-ph/0506266]. The latest experimental result of $ f_{D^+} $ from CLEO [hep-ex/0508057] is in good agreement with our prediction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا