A new route to spin-orbit torque engineering via oxygen manipulation


Abstract in English

Spin transfer torques allow for electrical manipulation of magnetization at room temperature, which is utilized to build future electronic devices such as spin transfer torque memories. Recent experiments have discovered that the combination of the spin transfer torque with the spin Hall effect enables more efficient manipulation. A versatile control mechanism of such spin-orbit torques is beneficial to envision device applications with competitive advantages over the existing schemes. Here we report that the oxidation manipulation of spin-orbit torque devices triggers a new mechanism, and the resulting torques are estimated to be about two times stronger than that of the spin Hall effect. Our result introduces an entirely new way to engineer the spin-orbit torques for device operation via oxygen manipulation. Combined with electrical gating for the control of the oxygen content, our finding may also pave the way for towards reconfigurable logic devices.

Download