No Arabic abstract
In this work we investigate protoneutron star properties within a modified version of the quark coupling model (QMC) that incorporates a omega-rho interaction plus kaon condensed matter at finite temperature. Fixed entropy and trapped neutrinos are taken into account. Our results are compared with the ones obtained with the GM1 parametrization of the non-linear Walecka model for similar values of the symmetry energy slope. Contrary to GM1, within the QMC the formation of low mass black-holes during cooling are not probable. It is shown that the evolution of the protoneutron star may include the melting of the kaon condensate driven by the neutrino diffusion, followed by the formation of a second condensate after cooling. The signature of this complex proccess could be a neutrino signal followed by a gamma ray burst. We have seen that both models can, in general, describe very massive stars.
The neutron skin thickness $Delta r_{rm{np}}$ of heavy nuclei is essentially determined by the symmetry energy density slope $L({rho })$ at $rho_c = 0.11/0.16rho_0$ ($rho_0$ is nuclear saturation density), roughly corresponding to the average density of finite nuclei. The PREX collaboration recently reported a model-independent extraction of $Delta r^{208}_{rm{np}} = 0.29 pm 0.07$ fm for the $Delta r_{rm{np}}$ of $^{208}$Pb, which suggests a rather stiff symmetry energy $E_{rm{sym}}({rho })$ with $L({rho_c }) ge 55$ MeV. We demonstrate that the $E_{rm{sym}}({rho })$ cannot be too stiff and $L({rho_c }) le 73$ MeV is necessary to be compatible with (1) the ground-state properties and giant monopole resonances of finite nuclei, (2) the constraints on the equation of state of symmetric nuclear matter at suprasaturation densities from flow data in heavy-ion collisions, (3) the largest neutron star (NS) mass reported so far for PSR J0740+6620, (4) the NS tidal deformability extracted from gravitational wave signal GW170817 and (5) the mass-radius of PSR J0030+045 measured simultaneously by NICER. This allow us to obtain $55 le L({rho_c }) le 73$ MeV and $0.22 le Delta r^{208}_{rm{np}} le 0.27$ fm, and further $E_{rm{sym}}({rho_0 }) = 34.5 pm 1.5$ MeV, $L({rho_0 }) = 85.5 pm 22.2$ MeV, and $E_{rm{sym}}({2rho_0 }) = 63.9 pm 14.8$ MeV. A number of critical implications on nuclear physics and astrophysics are discussed.
We report a new equation of state (EoS) of cold and hot hyperonic matter constructed in the framework of the quark-meson-coupling (QMC-A) model. The QMC-A EoS yields results compatible with available nuclear physics constraints and astrophysical observations. It covers the range of temperatures from T=0 to 100 MeV, entropies per particle S/A between 0 and 6, lepton fractions from Y$_L$=0.0 to 0.6, and baryon number densities n$_B$=0.05-1.2 fm$^{-3}$. Applications of the QMC-A EoS are made to cold neutron stars (NS) and to hot proto-neutron stars (PNS) in two scenarios, (i) lepton rich matter with trapped neutrinos and (ii) deleptonized chemically equilibrated matter. We find that the QMC-A model predicts hyperons in amounts growing with increasing temperature and density, thus suggesting not only their presence in PNS but also, most likely, in NS merger remnants. The nucleon-hyperon phase transition is studied through the adiabatic index and the speed of sound c$_s$. It is shown that the lowering of (c$_s$/c)$^2$ to and below the conformal limit of 1/3 is a general consequence of instabilities due to any phase transition and is not a unique fingerprint of the hadron-quark matter transition. Rigid rotation of cold and hot stars, their moments of inertia and Kepler frequencies are also explored. The QMC-A model results are compared with two relativistic models, the chiral mean field model (CMF), and the generalized relativistic density functional with hyperons (GRDF-Y). Similarities and differences are discussed.
Determining the Equation of State (EOS) of dense neutron-rich nuclear matter is a shared goal of both nuclear physics and astrophysics. Except possible phase transitions, the density dependence of nuclear symmetry esym is the most uncertain part of the EOS of neutron-rich nucleonic matter especially at supra-saturation densities. Much progresses have been made in recent years in predicting the symmetry energy and understanding why it is still very uncertain using various microscopic nuclear many-body theories and phenomenological models. Simultaneously, significant progresses have also been made in probing the symmetry energy in both terrestrial nuclear laboratories and astrophysical observatories. In light of the GW170817 event as well as ongoing or planned nuclear experiments and astrophysical observations probing the EOS of dense neutron-rich matter, we review recent progresses and identify new challenges to the best knowledge we have on several selected topics critical for understanding astrophysical effects of the nuclear symmetry energy.
In this work the low density regions of nuclear and neutron star matter are studied. The search for the existence of pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter in beta equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in the coexistence phases regime and we present results that show the existence of the pasta phases subject to some choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in supernova simulations.
A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy $L$ of such models, and constraints extracted on $L$ from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust, (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer, (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden re-coupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning, (iv) The frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations, (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary, and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger.