The Evolving Magnetic Scales of the Outer Solar Atmosphere and Their Potential Impact on Heliospheric Turbulence


Abstract in English

The presence of turbulent phenomena in the outer solar atmosphere is a given. However, because we are reduced to remotely sensing the atmosphere of a star with instruments of limited spatial and/or spectral resolution, we can only infer the physical progression from macroscopic to microscopic phenomena. Even so, we know that many, if not all, of the turbulent phenomena that pervade interplanetary space have physical origins at the Sun and so in this brief article we consider some recent measurements which point to sustained potential source(s) of heliospheric turbulence in the magnetic and thermal domains. In particular, we look at the scales of magnetism that are imprinted on the outer solar atmosphere by the relentless magneto-convection of the solar interior and combine state-of-the-art observations from the Solar Dynamics Observatory (SDO) and the Coronal Multi-channel Polarimeter (CoMP) which are beginning to hint at the origins of the wave/plasma interplay prevalent closer to the Earth. While linking these disparate scales of observation and understanding of their connection is near to impossible, it is clear that the constant evolution of subsurface magnetism on a host of scales guides and governs the flow of mass and energy at the smallest scales. In the near future significant progress in this area will be made by linking observations from high resolution platforms like the Interface Region Imaging Spectrograph (IRIS) and Advanced Technology Solar Telescope (ATST) with full-disk synoptic observations such as those presented herein.

Download