Do you want to publish a course? Click here

Notes on Elementary Spectral Graph Theory. Applications to Graph Clustering Using Normalized Cuts

119   0   0.0 ( 0 )
 Added by Jean Gallier
 Publication date 2013
and research's language is English
 Authors Jean Gallier




Ask ChatGPT about the research

These are notes on the method of normalized graph cuts and its applications to graph clustering. I provide a fairly thorough treatment of this deeply original method due to Shi and Malik, including complete proofs. I include the necessary background on graphs and graph Laplacians. I then explain in detail how the eigenvectors of the graph Laplacian can be used to draw a graph. This is an attractive application of graph Laplacians. The main thrust of this paper is the method of normalized cuts. I give a detailed account for K = 2 clusters, and also for K > 2 clusters, based on the work of Yu and Shi. Three points that do not appear to have been clearly articulated before are elaborated: 1. The solutions of the main optimization problem should be viewed as tuples in the K-fold cartesian product of projective space RP^{N-1}. 2. When K > 2, the solutions of the relaxed problem should be viewed as elements of the Grassmannian G(K,N). 3. Two possible Riemannian distances are available to compare the closeness of solutions: (a) The distance on (RP^{N-1})^K. (b) The distance on the Grassmannian. I also clarify what should be the necessary and sufficient conditions for a matrix to represent a partition of the vertices of a graph to be clustered.



rate research

Read More

Vector space representations of words capture many aspects of word similarity, but such methods tend to make vector spaces in which antonyms (as well as synonyms) are close to each other. We present a new signed spectral normalized graph cut algorithm, signed clustering, that overlays existing thesauri upon distributionally derived vector representations of words, so that antonym relationships between word pairs are represented by negative weights. Our signed clustering algorithm produces clusters of words which simultaneously capture distributional and synonym relations. We evaluate these clusters against the SimLex-999 dataset (Hill et al.,2014) of human judgments of word pair similarities, and also show the benefit of using our clusters to predict the sentiment of a given text.
Bacterial biofilm segmentation poses significant challenges due to lack of apparent structure, poor imaging resolution, limited contrast between conterminous cells and high density of cells that overlap. Although there exist bacterial segmentation algorithms in the existing art, they fail to delineate cells in dense biofilms, especially in 3D imaging scenarios in which the cells are growing and subdividing in a complex manner. A graph-based data clustering method, LCuts, is presented with the application on bacterial cell segmentation. By constructing a weighted graph with node features in locations and principal orientations, the proposed method can automatically classify and detect differently oriented aggregations of linear structures (represent by bacteria in the application). The method assists in the assessment of several facets, such as bacterium tracking, cluster growth, and mapping of migration patterns of bacterial biofilms. Quantitative and qualitative measures for 2D data demonstrate the superiority of proposed method over the state of the art. Preliminary 3D results exhibit reliable classification of the cells with 97% accuracy.
335 - Jean Gallier 2016
This is a survey of the method of graph cuts and its applications to graph clustering of weighted unsigned and signed graphs. I provide a fairly thorough treatment of the method of normalized graph cuts, a deeply original method due to Shi and Malik, including complete proofs. The main thrust of this paper is the method of normalized cuts. I give a detailed account for K = 2 clusters, and also for K > 2 clusters, based on the work of Yu and Shi. I also show how both graph drawing and normalized cut K-clustering can be easily generalized to handle signed graphs, which are weighted graphs in which the weight matrix W may have negative coefficients. Intuitively, negative coefficients indicate distance or dissimilarity. The solution is to replace the degree matrix by the matrix in which absolute values of the weights are used, and to replace the Laplacian by the Laplacian with the new degree matrix of absolute values. As far as I know, the generalization of K-way normalized clustering to signed graphs is new. Finally, I show how the method of ratio cuts, in which a cut is normalized by the size of the cluster rather than its volume, is just a special case of normalized cuts.
One of the key challenges in the area of signal processing on graphs is to design transforms and dictionaries methods to identify and exploit structure in signals on weighted graphs. In this paper, we first generalize graph Fourier transform (GFT) to graph fractional Fourier transform (GFRFT), which is then used to define a novel transform named spectral graph fractional wavelet transform (SGFRWT), which is a generalized and extended version of spectral graph wavelet transform (SGWT). A fast algorithm for SGFRWT is also derived and implemented based on Fourier series approximation. The potential applications of SGFRWT are also presented.
We introduce a novel end-to-end approach for learning to cluster in the absence of labeled examples. Our clustering objective is based on optimizing normalized cuts, a criterion which measures both intra-cluster similarity as well as inter-cluster dissimilarity. We define a differentiable loss function equivalent to the expected normalized cuts. Unlike much of the work in unsupervised deep learning, our trained model directly outputs final cluster assignments, rather than embeddings that need further processing to be usable. Our approach generalizes to unseen datasets across a wide variety of domains, including text, and image. Specifically, we achieve state-of-the-art results on popular unsupervised clustering benchmarks (e.g., MNIST, Reuters, CIFAR-10, and CIFAR-100), outperforming the strongest baselines by up to 10.9%. Our generalization results are superior (by up to 21.9%) to the recent top-performing clustering approach with the ability to generalize.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا