Do you want to publish a course? Click here

Model of the Electronic Structure of Electron-Doped Iron-Based Superconductors: Evidence for Enhanced Spin Fluctuations by Diagonal Electron Hopping

129   0   0.0 ( 0 )
 Added by Katsuhiro Suzuki
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a theoretical understanding of the superconducting phase diagram of the electron-doped iron pnictides. We show that, besides the Fermi surface nesting, a peculiar motion of electrons, where the next nearest neighbor (diagonal) hoppings between iron sites dominate over the nearest neighbor ones, plays an important role in the enhancement of the spin fluctuation and thus superconductivity. In the highest $T_c$ materials, the crossover between the Fermi surface nesting and this prioritized diagonal motion regime occurs smoothly with doping, while in relatively low $T_c$ materials, the two regimes are separated and therefore results in a double dome $T_c$ phase diagram.



rate research

Read More

We theoretically study the spin fluctuation and superconductivity in La1111 and Sm1111 iron-based superconductors for a wide range of electron doping. When we take into account the band structure variation by electron doping, the hole Fermi surface originating from the $d_{X^2-Y^2}$ orbital turns out to be robust against electron doping, and this gives rise to large spin fluctuations and consequently $spm$ pairing even in the heavily doped regime. The stable hole Fermi surface is larger for Sm1111 than for La1111, which can be considered as the origin of the apparent difference in the phase diagram.
Iron arsenide superconductors based on the material LaFeAsO1-xFx are characterized by a two-dimensional Fermi surface (FS) consisting of hole and electron pockets yielding structural and antiferromagnetic transitions at x = 0. Electron doping by substituting O2- with F- suppresses these transitions and gives rise to superconductivity with a maximum Tc = 26 K at x = 0.1. However, the over-doped region cannot be accessed due to the poor solubility of F- above x = 0.2. Here we overcome this problem by doping LaFeAsO with hydrogen. We report the phase diagram of LaFeAsO1-xHx (x < 0.53) and, in addition to the conventional superconducting dome seen in LaFeAsO1-xFx, we find a second dome in the range 0.21 < x < 0.53, with a maximum Tc of 36 K at x = 0.3. Density functional theory calculations reveal that the three Fe 3d bands (xy, yz, zx) become degenerate at x = 0.36, whereas the FS nesting is weakened monotonically with x. These results imply that the band degeneracy has an important role to induce high Tc.
88 - Bingying Pan , Yao Shen , Die Hu 2016
Heavily electron-doped iron-selenide (HEDIS) high-transition-temperature (high-$T_{rm{c}}$) superconductors, which have no hole Fermi pockets, but have a notably high $T_{rm{c}}$, have challenged the prevailing $s$$_pm$ pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in HEDIS remains unclear. Here, we used neutron scattering to study the spin excitations of the HEDIS material Li$_{0.8}$Fe$_{0.2}$ODFeSe ($T_{rm{c}}$ = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding ($pi$, $pi$) at $sim$ 21 meV. As the energy increased, the spin excitations assumed a diamond shape, and they dispersed outward until the energy reached $sim$ 60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near ($pi$, $pi$) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high $T_{rm{c}}$ in these materials.
81 - Maxim M. Korshunov 2017
Multiband systems, which possess a wide parameter space, allow to explore a variety of competing ground states. Bright examples are the Fe-based pnictides and chalcogenides, which demonstrate metallic, superconducting, and various magnetic phases. Here I discuss only one of the many interesting topics, namely, spin fluctuations in metallic multiband systems. I show how to calculate the effect of itinerant spin excitations on the electronic properties and formulate a theory of spin fluctuation-induced superconductivity. The superconducting state is unconventional and thus the system demonstrates unusual spin response with the spin resonance feature. I discuss its origin, consequences, and relation to experimental observations. Role of the spin-orbit coupling is specifically emphasized.
130 - N. Bariv{s}ic , D. Wu , M. Dressel 2010
The electrodynamic properties of Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and Ba(Fe$_{0.95}$Ni$_{0.05})_As$_{2}$ single crystals have been investigated by reflectivity measurements in a wide frequency range. In the metallic state, the optical conductivity consists of a broad incoherent background and a narrow Drude-like component which determines the transport properties; only the latter contribution strongly depends on the composition and temperature. This subsystem reveals a $T^2$ behavior in the dc resistivity and scattering rate disclosing a hidden Fermi-liquid behavior in the 122 iron-pnictide family. An extended Drude analysis yields the frequency dependence of the effective mass (with $m^*/m_bapprox 5$ in the static limit) and scattering rate that does not disclose a simple power law. The spectral weight shifts to lower energies upon cooling; a significant fraction is not recovered within the infrared range of frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا