Do you want to publish a course? Click here

Semi-discrete semi-linear parabolic SPDEs

144   0   0.0 ( 0 )
 Added by Nicos Georgiou
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Consider an infinite system [partial_tu_t(x)=(mathscr{L}u_t)(x)+ sigmabigl(u_t(x)bigr)partial_tB_t(x)] of interacting It^{o} diffusions, started at a nonnegative deterministic bounded initial profile. We study local and global features of the solution under standard regularity assumptions on the nonlinearity $sigma$. We will show that, locally in time, the solution behaves as a collection of independent diffusions. We prove also that the $k$th moment Lyapunov exponent is frequently of sharp order $k^2$, in contrast to the continuous-space stochastic heat equation whose $k$th moment Lyapunov exponent can be of sharp order $k^3$. When the underlying walk is transient and the noise level is sufficiently low, we prove also that the solution is a.s. uniformly dissipative provided that the initial profile is in $ell^1(mathbf {Z}^d)$.



rate research

Read More

The study of intermittency for the parabolic Anderson problem usually focuses on the moments of the solution which can describe the high peaks in the probability space. In this paper we set up the equation on a finite spatial interval, and study the other part of intermittency, i.e., the part of the probability space on which the solution is close to zero. This set has probability very close to one, and we show that on this set, the supremum of the solution over space is close to 0. As a consequence, we find that almost surely the spatial supremum of the solution tends to zero exponentially fast as time increases. We also show that if the noise term is very large, then the probability of the set on which the supremum of the solution is very small has a very high probability.
77 - Yuxing Wang , Kai Du 2019
In this paper we consider the Cauchy problem for $2m$-order stochastic partial differential equations of parabolic type in a class of stochastic Hoelder spaces. The Hoelder estimates of solutions and their spatial derivatives up to order $2m$ are obtained, based on which the existence and uniqueness of solution is proved. An interesting finding of this paper is that the regularity of solutions relies on a coercivity condition that differs when $m$ is odd or even: the condition for odd $m$ coincides with the standard parabolicity condition in the literature for higher-order stochastic partial differential equations, while for even $m$ it depends on the integrability index $p$. The sharpness of the new-found coercivity condition is demonstrated by an example.
68 - Mihai Nica 2016
We show that the partition function of the multi-layer semi-discrete directed polymer converges in the intermediate disorder regime to the partition function for the multi-layer continuum polymer introduced by OConnell and Warren. This verifies, modulo a previously hidden constant, an outstanding conjecture proposed by Corwin and Hammond. A consequence is the identification of the KPZ line ensemble as logarithms of ratios of consecutive layers of the continuum partition function. Other properties of the continuum partition function, such as continuity, strict positivity and contour integral formulas to compute mixed moments, are also identified from this convergence result.
118 - K. Bahlali 2015
We study the asymptotic behavior of solution of semi-linear PDEs. Neither periodicity nor ergodicity will be assumed. In return, we assume that the coefficients admit a limit in `{C}esaro sense. In such a case, the averaged coefficients could be discontinuous. We use probabilistic approach based on weak convergence for the associated backward stochastic differential equation in the S-topology to derive the averaged PDE. However, since the averaged coefficients are discontinuous, the classical viscosity solution is not defined for the averaged PDE. We then use the notion of $L^p-$viscosity solution introduced in cite{CCKS}. We use BSDEs techniques to establish the existence of $L^p-$viscosity solution for the averaged PDE. We establish weak continuity for the flow of the limit diffusion process and related the PDE limit to the backward stochastic differential equation via the representation of $L^p$-viscosity solution.
We give a new and constructive proof of the existence of global-in-time weak solutions of the 3-dimensional incompressible semi-geostrophic equations (SG) in geostrophic coordinates, for arbitrary initial measures with compact support. This new proof, based on semi-discrete optimal transport techniques, works by characterising discrete solutions of SG in geostrophic coordinates in terms of trajectories satisfying an ordinary differential equation. It is advantageous in its simplicity and its explicit relation to Eulerian coordinates through the use of Laguerre tessellations. Using our method, we obtain improved time-regularity for a large class of discrete initial measures, and we compute explicitly two discrete solutions. The method naturally gives rise to an efficient numerical method, which we illustrate by presenting simulations of a 2-dimensional semi-geostrophic flow in geostrophic coordinates generated using a numerical solver for the semi-discrete optimal transport problem coupled with an ordinary differential equation solver.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا