Levy Processes and Quasi-Shuffle Algebras


Abstract in English

We investigate the algebra of repeated integrals of semimartingales. We prove that a minimal family of semimartingales generates a quasi-shuffle algebra. In essence, to fulfill the minimality criterion, first, the family must be a minimal generator of the algebra of repeated integrals generated by its elements and by quadratic covariation processes recursively constructed from the elements of the family. Second, recursively constructed quadratic covariation processes may lie in the linear span of previously constructed ones and of the family, but may not lie in the linear span of repeated integrals of these. We prove that a finite family of independent Levy processes that have finite moments generates a minimal family. Key to the proof are the Teugels martingales and a strong orthogonalization of them. We conclude that a finite family of independent Levy processes form a quasi-shuffle algebra. We discuss important potential applications to constructing efficient numerical methods for the strong approximation of stochastic differential equations driven by Levy processes.

Download