Do you want to publish a course? Click here

Implications of LHC search results on the W boson mass prediction in the MSSM

152   0   0.0 ( 0 )
 Added by Lisa Zeune
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We present the currently most precise W boson mass (M_W) prediction in the Minimal Supersymmetric Standard Model (MSSM) and discuss how it is affected by recent results from the LHC. The evaluation includes the full one-loop result and all known higher order corrections of SM and SUSY type. We show the MSSM prediction in the M_W-m_t plane, taking into account constraints from Higgs and SUSY searches. We point out that even if stops and sbottoms are heavy, relatively large SUSY contributions to M_W are possible if either charginos, neutralinos or sleptons are light. In particular we analyze the effect on the M_W prediction of the Higgs signal at about 125.6 GeV, which within the MSSM can in principle be interpreted as the light or the heavy CP-even Higgs boson. For both interpretations the predicted MSSM region for M_W is in good agreement with the experimental measurement. We furthermore discuss the impact of possible future LHC results in the stop sector on the M_W prediction, considering both the cases of improved limits and of the detection of a scalar top quark.



rate research

Read More

The determination of the $W$-boson mass through an analysis of the decay charged-lepton transverse momentum distribution has a sizable uncertainty due to the imperfect knowledge of the relevant parton distribution functions (PDFs). In this paper, a quantitative assessment of the $W$-boson mass uncertainty at the LHC resulting from the PDF uncertainty is examined. We use the CT14 NNLO PDFs with a NNLL + NNLO calculation (ResBos) to simulate the $W$-boson production and decay kinematics. The uncertainty of the $W$-boson mass determination is then determined as a function of the boson and lepton kinematics. For $W^{+}$ production using $P_{T}^{W} < 15$ GeV and $35 < P_{T}^{l}$ (GeV) $< 45$, PDF uncertainties (at the 68% CL) of $^{+16.0}_{-17.5}$ MeV, $^{+13.9}_{-14.8}$ MeV, and $^{+12.2}_{-19.2}$ MeV, are determined at 7 TeV, 8 TeV and 13 TeV respectively. The uncertainties of $W^{-}$ for the same cuts are found to be $^{+15.9}_{-15.6}$ MeV, $^{+15.0}_{-12.7}$ MeV and $^{+14.8}_{-15.3}$ MeV, at 7 TeV, 8 TeV and 13 TeV respectively.
We investigate the associated production of charged Higgs bosons (H^pm) and W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within different scenarios of the Minimal Supersymmetric Standard Model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible Standard Model background from W + 2 jets can be controlled by applying appropriate cuts. In the standard m_h^max scenario we find a viable signal for large tan beta and intermediate H^pm masses (~ m_t). In MSSM scenarios with large mass-splittings among the heavy Higgs bosons the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the CP-violating phases.
97 - Ahmed Ali 2009
The extensions of the minimal supersymmetric model (MSSM), driving mainly from the need to solve the mu problem, involve novel matter species and gauge groups. These extended MSSM models can be searched for at the LHC via the effects of the gauge and Higgs bosons or their fermionic partners. Traditionally, the focus has been on the study of the extra forces induced by the new gauge and Higgs bosons present in such models. An alternative way of studying such effects is through the superpartners of matter species and the gauge forces. We thus consider a $U(1)^prime$ gauge extension of the MSSM, and perform an extensive study of the signatures of the model through the production and decays of the scalar quarks and gluino, which are expected to be produced copiously at the LHC. After a detailed study of the distinctive features of such models with regard to the signatures at the LHC, we carry out a detailed Monte Carlo analysis of the signals from the process pp-> n leptons + m jets + EMT, and compare the resulting distributions with those predicted by the MSSM. Our results show that the searches for the extra gauge interactions in the supersymmetric framework can proceed not only through the forces mediated by the gauge and Higgs bosons but also through the superpartner forces mediated by the gauge and Higgs fermions. Analysis of the events induced by the squark/gluino decays presented here is complementary to the direct Z searches at the LHC.
We present a renormalizable theory that includes a $W$ boson of mass in the 1.8-2 TeV range, which may explain the excess events reported by the ATLAS Collaboration in a $WZ$ final state, and by the CMS Collaboration in $e^+!e^- jj$, $Wh^0$ and $jj$ final states. The $W$ boson couples to right-handed quarks and leptons, including Dirac neutrinos with TeV-scale masses. This theory predicts a $Z$ boson of mass in the 3.4-4.5 TeV range. The cross section times branching fractions for the narrow $Z$ dijet and dilepton peaks at the 13 TeV LHC are 10 fb and 0.6 fb, respectively, for $M_{Z}= 3.4$ TeV, and an order of magnitude smaller for $M_{Z}= 4.5$ TeV.
Within the framework of transverse-momentum-dependent factorization, we investigate for the first time the impact of a flavor-dependent intrinsic transverse momentum of quarks on the production of $W^{pm}$ bosons in proton-proton collisions at $sqrt{s}$ = 7 TeV. We estimate the shift in the extracted value of the $W$ boson mass $M_W$ induced by different choices of flavor-dependent parameters for the intrinsic quark transverse momentum by means of a template fit to the transverse-mass and the lepton transverse-momentum distributions of the $W$-decay products. We obtain $-6leq Delta M_{W^+} leq 9$ MeV and $-4leq Delta M_{W^-} leq 3$ MeV with a statistical uncertainty of $pm 2.5$ MeV. Our findings call for more detailed investigations of flavor-dependent nonperturbative effects linked to the proton structure at hadron colliders.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا