Do you want to publish a course? Click here

Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis

316   0   0.0 ( 0 )
 Added by Miguel O. Bernabeu
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

There is currently limited understanding of the role played by haemodynamic forces on the processes governing vascular development. One of many obstacles to be overcome is being able to measure those forces, at the required resolution level, on vessels only a few micrometres thick. In the current paper, we present an in silico method for the computation of the haemodynamic forces experienced by murine retinal vasculature (a widely used vascular development animal model) beyond what is measurable experimentally. Our results show that it is possible to reconstruct high-resolution three-dimensional geometrical models directly from samples of retinal vasculature and that the lattice-Boltzmann algorithm can be used to obtain accurate estimates of the haemodynamics in these domains. We generate flow models from samples obtained at postnatal days (P) 5 and 6. Our simulations show important differences between the flow patterns recovered in both cases, including observations of regression occurring in areas where wall shear stress gradients exist. We propose two possible mechanisms to account for the observed increase in velocity and wall shear stress between P5 and P6: i) the measured reduction in typical vessel diameter between both time points, ii) the reduction in network density triggered by the pruning process. The methodology developed herein is applicable to other biomedical domains where microvasculature can be imaged but experimental flow measurements are unavailable or difficult to obtain.



rate research

Read More

127 - Atanas Atanasov 2018
Computational Steering, the combination of a simulation back-end with a visualisation front-end, offers great possibilities to exploit and optimise scenarios in engineering applications. Due to its interactivity, it requires fast grid generation, simulation, and visualisation and, therefore, mostly has to rely on coarse and inaccurate simulations typically performed on rather small interactive computing facilities and not on much more powerful high-performance computing architectures operated in batch-mode. This paper presents a steering environment that intends to bring these two worlds - the interactive and the classical HPC world - together in an integrated way. The environment consists of efficient fluid dynamics simulation codes and a steering and visualisation framework providing a user interface, communication methods for distributed steering, and parallel visualisation tools. The gap between steering and HPC is bridged by a hierarchical approach that performs fast interactive simulations for many scenario variants increasing the accuracy via hierarchical refinements in dependence of the time the user wants to wait. Finally, the user can trigger large simulations for selected setups on an HPC architecture exploiting the pre-computations already done on the interactive system.
The work analyzes a one-dimensional viscoelastic model of blood vessel growth under nonlinear friction with surroundings, and provides numerical simulations for various growing cases. For the nonlinear differential equations, two sufficient conditions are proven to guarantee the global existence of biologically meaningful solutions. Examples with breakdown solutions are captured by numerical approximations. Numerical simulations demonstrate this model can reproduce angiogenesis experiments under various biological conditions including blood vessel extension without proliferation and blood vessel regression.
We present a method to estimate Gibbs distributions with textit{spatio-temporal} constraints on spike trains statistics. We apply this method to spike trains recorded from ganglion cells of the salamander retina, in response to natural movies. Our analysis, restricted to a few neurons, performs more accurately than pairwise synchronization models (Ising) or the 1-time step Markov models (cite{marre-boustani-etal:09}) to describe the statistics of spatio-temporal spike patterns and emphasizes the role of higher order spatio-temporal interactions.
The pathogenesis of adolescent idiopathic scoliosis (AIS) remains poorly understood and biomechanical data are limited. A deeper insight into spinal loading could provide valuable information for the improvement of current treatment strategies. This work therefore aimed at using subject-specific musculoskeletal full-body models of patients with AIS to predict segmental compressive forces around the curve apex and to investigate how these forces are affected by simulated load carrying. Models were created based on spatially calibrated biplanar radiographic images from 24 patients with mild to moderate AIS and validated by comparing predictions of paravertebral muscle activity with reported values from in vivo studies. Spinal compressive forces were predicted during unloaded upright standing as well as upright standing with external loads of 10%, 15% and 20% of body weight (BW) applied to the scapulae to simulate carrying a backpack in the regular way, in front of the body and over both shoulders. The validation studies showed higher convex muscle activity, which was comparable to the literature. The implementation of spinal deformity resulted in a 10% increase of compressive force at the curve apex during unloaded upright standing. Apical compressive forces further increased by 50-62%, 77-94% and 103-128% for 10%, 15% and 20% BW loads, respectively. Moreover, load-dependent compressive force increases were the lowest in the regular backpack and the highest in the frontpack and convex conditions. The predictions indicated increased segmental compressive forces during unloaded standing, which could be ascribed to the scoliotic deformation. When carrying loads, compressive forces further increased depending on the carrying mode and the weight of the load. These results can be used as a basis for further studies investigating segmental loading in AIS patients during functional activities.
104 - D. S. Grebenkov , R. Metzler , 2019
In the scenario of the narrow escape problem (NEP) a particle diffuses in a finite container and eventually leaves it through a small escape window in the otherwise impermeable boundary, once it arrives to this window and over-passes an entropic barrier at the entrance to it. This generic problem is mathematically identical to that of a diffusion-mediated reaction with a partially-reactive site on the containers boundary. Considerable knowledge is available on the dependence of the mean first-reaction time (FRT) on the pertinent parameters. We here go a distinct step further and derive the full FRT distribution for the NEP. We demonstrate that typical FRTs may be orders of magnitude shorter than the mean one, thus resulting in a strong defocusing of characteristic temporal scales. We unveil the geometry-control of the typical times, emphasising the role of the initial distance to the target as a decisive parameter. A crucial finding is the further FRT defocusing due to the barrier, necessitating repeated escape or reaction attempts interspersed with bulk excursions. These results add new perspectives and offer a broad comprehension of various features of the by-now classical NEP that are relevant for numerous biological and technological systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا