Do you want to publish a course? Click here

Catching Shaped Microwave Photons with 99.4% Absorption Efficiency

143   0   0.0 ( 0 )
 Added by James Wenner
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a high efficiency deterministic quantum receiver to convert flying qubits to logic qubits. We employ a superconducting resonator, which is driven with a shaped pulse through an adjustable coupler. For the ideal time reversed shape, we measure absorption and receiver fidelities at the single microwave photon level of, respectively, 99.41% and 97.4%. These fidelities are comparable with gates and measurement and exceed the deterministic quantum communication and computation fault tolerant thresholds.



rate research

Read More

Single-photon detectors (SPDs) at near infrared wavelengths with high system detection efficiency (> 90%), low dark count rate (< 1 counts per second, cps), low timing jitter (< 100 ps), and short reset time (< 100 ns) would enable landmark experiments in a variety of fields. Although some of the existing approaches to single-photon detection fulfill one or two of the above specifications, to date no detector has met all of the specifications simultaneously. Here we report on a fiber-coupled single-photon-detection system employing superconducting nanowire single photon detectors (SNSPDs) that closely approaches the ideal performance of SPDs. Our detector system has a system detection efficiency (SDE), including optical coupling losses, greater than 90% in the wavelength range lambda = 1520-1610 nm; device dark count rate (measured with the device shielded from room-temperature blackbody radiation) of ~ 0.01 cps; timing jitter of ~ 150 ps FWHM; and reset time of 40 ns.
Electromagnetic signals in circuits consist of discrete photons, though conventional voltage sources can only generate classical fields with a coherent superposition of many different photon numbers. While these classical signals can control and measure bits in a quantum computer (qubits), single photons can carry quantum information, enabling non-local quantum interactions, an important resource for scalable quantum computing. Here, we demonstrate an on-chip single photon source in a circuit quantum electrodynamics (QED) architecture, with a microwave transmission line cavity that collects the spontaneous emission of a single superconducting qubit with high efficiency. The photon source is triggered by a qubit rotation, as a photon is generated only when the qubit is excited. Tomography of both qubit and fluorescence photon shows that arbitrary qubit states can be mapped onto the photon state, demonstrating an ability to convert a stationary qubit into a flying qubit. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.
Heralding techniques are useful in quantum communication to circumvent losses without resorting to error correction schemes or quantum repeaters. Such techniques are realized, for example, by monitoring for photon loss at the receiving end of the quantum link while not disturbing the transmitted quantum state. We describe and experimentally benchmark a scheme that incorporates error detection in a quantum channel connecting two transmon qubits using traveling microwave photons. This is achieved by encoding the quantum information as a time-bin superposition of a single photon, which simultaneously realizes high communication rates and high fidelities. The presented scheme is straightforward to implement in circuit QED and is fully microwave-controlled, making it an interesting candidate for future modular quantum computing architectures.
Broadband quantum-limited amplifiers would advance applications in quantum information processing, metrology, and astronomy. However, conventional traveling-wave parametric amplifiers (TWPAs) support broadband amplification at the cost of increased added noise. In this work, we develop and apply a multi-mode, quantum input-output theory to quantitatively identify the sidebands as a primary noise mechanism in all conventional TWPAs. We then propose an adiabatic Floquet mode scheme that effectively eliminates the sideband-induced noise and subsequently overcomes the trade-off between quantum efficiency (QE) and bandwidth. We then show that a Floquet mode Josephson traveling-wave parametric amplifier implementation can simultaneously achieve $>20,$dB gain and a QE of $eta/eta_{mathrm{ideal}}> 99.9%$ of the quantum limit over more than an octave of bandwidth. Crucially, Floquet mode TWPAs also strongly suppress the nonlinear forward-backward wave coupling and are therefore genuinely directional. Floquet mode TWPAs can thus be directly integrated on-chip without isolators, making near-perfect measurement efficiency possible. The proposed Floquet scheme is also widely applicable to other platforms such as kinetic inductance traveling-wave amplifiers and optical parametric amplifiers.
Experiments with superconducting circuits require careful calibration of the applied pulses and fields over a large frequency range. This remains an ongoing challenge as commercial semiconductor electronics are not able to probe signals arriving at the chip due to its cryogenic environment. Here, we demonstrate how the on-chip amplitude and frequency of a microwave signal can be inferred from the ac Stark shifts of higher transmon levels. In our time-resolved measurements we employ Ramsey fringes, allowing us to detect the amplitude of the systems transfer function over a range of several hundreds of MHz with an energy sensitivity on the order of $10^{-4}$. Combined with similar measurements for the phase of the transfer function, our sensing method can facilitate pulse correction for high fidelity quantum gates in superconducting circuits. Additionally, the potential to characterize arbitrary microwave fields promotes applications in related areas of research, such as quantum optics or hybrid microwave systems including photonic, mechanical or magnonic subsystems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا