In this paper we compare Bose transport in normal phase atomic gases with its counterpart in Fermi gases, illustrating the non-universality of two dimensional bosonic transport associated with different dissipation mechanisms. Near the superfluid transition temperature $T_c$, a striking similarity between the fermionic and bosonic transport emerges because super-conducting(fluid) fluctuation transport for Fermi gases is dominated by the bosonic, Cooper pair component. As in fluctuation theory, one finds that the Seebeck coefficient changes sign at $T_c$ and the Lorenz number approaches zero at $T_c$. Our findings appear semi-quantitatively consistent with recent Bose gas experiments.