Do you want to publish a course? Click here

Conducting and insulating LaAlO$_3$/SrTiO$_3$ interfaces: A comparative surface photovoltage investigation

133   0   0.0 ( 0 )
 Added by Elke Beyreuther
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface photovoltage (SPV) spectroscopy, which is a versatile method to analyze the energetic distribution of electronic defect states at surfaces and interfaces of wide-bandgap semiconductor (hetero-)structures, is applied to comparatively investigate heterostructures made of 5-unit-cell-thick LaAlO$_3$ films grown either on TiO$_2$- or on SrO-terminated SrTiO$_3$. As shown in a number of experimental and theoretical investigations in the past, these two interfaces exhibit dramatically different properties with the first being conducting and the second insulating. Our present SPV investigation reveals clearly distinguishable interface defect state distributions for both configurations when interpreted within the framework of a classical semiconductor band scheme. Furthermore, bare SrTiO$_3$ crystals with TiO$_2$ or mixed SrO/TiO$_2$ terminations show similar SPV spectra and transients as do LaAlO$_3$-covered samples with the respective termination of the SrTiO$_3$ substrate. This is in accordance with a number of recent works that stress the decisive role of SrTiO$_3$ and the minor role of LaAlO$_3$ with respect to the electronic interface properties.



rate research

Read More

Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3$ (110) substrates and capped with LaAlO$_3$. When the SrTiO$_3$ thickness is $leq 6$ unit cells, most electrons at the interface are localized, but when the number of SrTiO$_3$ layers is 8-16, the free carrier density approaches $3.3 times 10^{14}$ cm$^{-2}$, the value corresponding to charge transfer of 0.5 electron per unit cell at the interface. The number of delocalized electrons decreases again when the SrTiO$_3$ thickness is $geq 20$ unit cells. The $sim{4}$ nm conducting channel is therefore located significantly below the interface. The results are explained in terms of Anderson localization and the position of the mobility edge with respect to the Fermi level.
Effects of X-ray irradiation on the electronic structure of LaAlO$_3$/SrTiO$_3$ (LAO/STO) samples, grown at low oxygen pressure and post-annealed ex-situ till recovery of their stoichiometry, were investigated by soft-X-ray ARPES. The irradiation at low sample temperature below ~100K creates oxygen vacancies (VOs) injecting Ti t2g-electrons into the interfacial mobile electron system (MES). At this temperature the oxygen out-diffusion is suppressed, and the VOs are expected to appear mostly in the top STO layer. However, we observe a pronounced three-dimensional (3D) character of the X-ray generated MES in our samples, indicating its large extension into the STO depth, which contrasts to the purely two-dimensional (2D) character of the MES in standard stoichiometric LAO/STO samples. Based on self-interaction-corrected DFT calculations of the MES induced by VOs at the interface and in STO bulk, we discuss possible mechanisms of this puzzling three-dimensionality. They may involve VOs remnant in the deeper STO layers, photoconductivity-induced metallic states as well as more exotic mechanisms such as X-ray induced formation of Frenkel pairs.
The two-dimensional electron gas occurring between the band insulators SrTiO$_3$ and LaAlO$_3$ continues to attract considerable interest, due to the possibility of dynamic control over the carrier density, and the ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations, there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO$_3$ layer at the growth temperature (around 800 $^o$C) in oxygen (pressure around $5times 10^{-5}$ mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in-situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO$_2$-rich surface and a conducting interface; or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.
Using the metal-insulator transition that takes place as a function of carrier density at the LaAlO$_3$-SrTiO$_3$ interface, oxide diodes have been fabricated with room-temperature breakdown voltages of up to 200 V. With applied voltage, the capacitance of the diodes changes by a factor of 150. The diodes are robust and operate at temperatures up to 270 C.
Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar lao ~thin films grown on sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on lao ~we measure a built-in electric field across lao ~of 93 meV/AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in sto, illuminating a unique property of sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا