We have performed magnetotransport measurements on a multi-layer graphene flake. At the crossing magnetic field Bc, an approximately temperature-independent point in the measured longitudinal resistivity, which is ascribed to the direct insulator-quantum Hall (I-QH) transition, is observed. By analyzing the amplitudes of the magnetoresistivity oscillations, we are able to measure the quantum mobility of our device. It is found that at the direct I-QH transition, the product of the quantum mobility and is about 0.37 which is considerably smaller than 1. In contrast, at Bc, the longitudinal resistivity is close to the Hall resistivity, i.e., the product of the classical mobility and the crossing field is about 1. Therefore our results suggest that different mobilities need to be introduced for the direct I-QH transition observed in multi-layered graphene. Combined with existing experimental results obtained in various material systems, our data obtained on graphene suggest that the direct I-QH transition is a universal effect in 2D.