Magnetism in nanoparticle LaCoO3


Abstract in English

LaCoO3 (LCO) nanoparticles were synthesized and their magnetic and structural properties were examined using SQUID magnetometery and neutron diffraction. The nanoparticles exhibit ferromagnetic long-range order beginning at T_C approximately 87K that persists to low temperatures. This behavior is contrasted with the ferromagnetism of bulk LCO, which also starts at T_C approximately 87K but is suppressed below a second transition at T_o approximately 37K, due to a structural phase transition. The ferromagnetism in both systems is attributed to the tensile stress from particle surfaces and impurity phase interfaces. This stress locally increases the Co-O-Co bond angle gamma, and competes with the thermal contraction of the lattice. It has recently been shown that LCO loses long-range ferromagnetic order when gamma decreases below the critical value gamma_c = 162.8 degrees. Consistent with this model, we show that gamma in nanoparticles remains larger than gamma_c at low temperatures, likely a consequence of all spins being in close proximity to surfaces or interfaces.

Download