Opportunistic Multiuser Two-Way Amplify-and-Forward Relaying with a Multi Antenna Relay


Abstract in English

We consider the opportunistic multiuser diversity in the multiuser two-way amplify-and-forward (AF) relay channel. The relay, equipped with multiple antennas and a simple zero-forcing beam-forming scheme, selects a set of two way relaying user pairs to enhance the degree of freedom (DoF) and consequently the sum throughput of the system. The proposed channel aligned pair scheduling (CAPS) algorithm reduces the inter-pair interference and keeps the signal to interference plus noise power ratio (SINR) of user pairs relatively interference free in average sense when the number of user pairs become very large. For ideal situations, where the number of user pairs grows faster than the system signal to noise ratio (SNR), the DoF of $M$ per channel use can be achieved when $M$ is the relay antenna size. With a limited number of pairs, the system is overloaded and the sum rates saturate at high signal to noise ratio (SNR) though modifications of CAPS can improve the performance to a certain amount. The performance of CAPS can be further enhanced by semi-orthogonal channel aligned pair scheduling (SCAPS) algorithm, which not only aligns the pair channels but also forms semi-orthogonal inter-pair channels. Simulation results show that we provide a set of approaches based on (S)CAPS and modified (S)CAPS, which provides system performance benefit depending on the SNR and the number of user pairs in the network.

Download