No Arabic abstract
We present high sensitivity and absolutely calibrated images of diffuse radio polarisation at a resolution of about 10 arcmin covering the range 10 degr <l<34 degr and |b|<5 degr at 2.3 GHz from the S-band Parkes All Sky Survey and at 4.8 GHz from the Sino-German 6 cm polarisation survey of the Galactic plane. Strong depolarisation near the Galactic plane is seen at 2.3 GHz, which correlates with strong Halpha emission. We ascribe the depolarisation to spatial Faraday rotation measure fluctuations of about 65 rad/m2 on scales smaller than 6-9 pc. We argue that most (about 90%) of the polarised emission seen at 4.8 GHz originates from a distance of 3-4 kpc in the Scutum arm and that the random magnetic field dominates the regular field there. A branch extending from the North Polar Spur towards lower latitudes can be identified from the polarisation image at 4.8 GHz but only partly from the polarised image at 2.3 GHz, implying the branch is at a distance larger than 2-3 kpc. We show that comparison of structure functions of complex polarised intensity with those of polarised intensity can indicate whether the observed polarised structures are intrinsic or caused by Faraday screens. The probability distribution function of gradients from the polarisation images at 2.3 GHz indicates the turbulence in the warm ionised medium is transonic.
Using the Urumqi 25m radio telescope, sources from the first three-month Fermi-LAT detected AGN catalog with declination >0 were observed in 2009 at 4.8 GHz. The radio flux density appears to correlate with the gamma-ray intensity. Intra-day variability (IDV) observations were performed in March, April and May in 2009 for selected 42 gamma-ray bright blazars, and 60% of them show evident flux variability at 4.8 GHz during the IDV observations, the IDV detection rate is higher than that in previous flat-spectrum AGN samples. The IDV appears more often in the VLBI-core dominant blazars, and the non-IDV blazars show relatively `steeper spectral indices than the IDV blazars. Pronounced inter-month variability has been found in two BL Lac objects: J0112+2244 and J0238+1636.
We have analysed the Rhodes/HartRAO survey at 2326 MHz and derived the global angular power spectrum of Galactic continuum emission. In order to measure the angular power spectrum of the diffuse component, point sources were removed from the map by median filtering. A least-square fit to the angular power spectrum of the entire survey with a power law spectrum C_l proportional to l^{-alpha}, gives alpha = 2.43 +/- 0.01 for l = 2-100. The angular power spectrum of radio emission appears to steepen at high Galactic latitudes and for observed regions with |b| > 20 deg, the fitted spectral index is alpha = 2.92 +/- 0.07. We have extrapolated this result to 30 GHz (the lowest frequency channel of Planck) and estimate that no significant contribution to the sky temperature fluctuation is likely to come from synchrotron at degree-angular scales
A new polarization survey of the northern sky at 1.41 GHz is presented. The observations were carried out using the 25.6m telescope at the Dominion Radio Astrophysical Observatory in Canada, with an angular resolution of 36 arcmin. The data are corrected for ground radiation to obtain Stokes U and Q maps on a well-established intensity scale tied to absolute determinations of zero levels, containing emission structures of large angular extent, with an rms noise of 12 mK. Survey observations were carried out by drift scanning the sky between -29 degr and +90 degr declination. The fully sampled drift scans, observed in steps of 0.25 degr to 2.5 degr in declination, result in a northern sky coverage of 41.7% of full Nyquist sampling. The survey surpasses by a factor of 200 the coverage, and by a factor of 5 the sensitivity, of the Leiden/Dwingeloo polarization survey (Spoelstra 1972) that was until now the most complete large-scale survey. The temperature scale is tied to the Effelsberg scale. Absolute zero-temperature levels are taken from the Leiden/Dwingeloo survey after rescaling those data by the factor of 0.94. The paper describes the observations, data processing, and calibration steps. The data are publicly available at http://www.mpifr-bonn.mpg.de/div/konti/26msurvey or http://www.drao.nrc.ca/26msurvey.
We have made the first detailed study of the high-frequency radio-source population in the local universe, using a sample of 202 radio sources from the Australia Telescope 20 GHz (AT20G) survey identified with galaxies from the 6dF Galaxy Survey (6dFGS). The AT20G-6dFGS galaxies have a median redshift of z=0.058 and span a wide range in radio luminosity, allowing us to make the first measurement of the local radio luminosity function at 20 GHz. Our sample includes some classical FR-1 and FR-2 radio galaxies, but most of the AT20G-6dFGS galaxies host compact (FR-0) radio AGN which appear lack extended radio emission even at lower frequencies. Most of these FR-0 sources show no evidence for relativistic beaming, and the FR-0 class appears to be a mixed population which includes young Compact Steep-Spectrum (CSS) and Gigahertz-Peaked Spectrum (GPS) radio galaxies. We see a strong dichotomy in the Wide-field Infrared Survey Explorer (WISE) mid-infrared colours of the host galaxies of FR-1 and FR-2 radio sources, with the FR-1 systems found almost exclusively in WISE `early-type galaxies and the FR-2 radio sources in WISE `late-type galaxies. The host galaxies of the flat- and steep-spectrum radio sources have a similar distribution in both K--band luminosity and WISE colours, though galaxies with flat-spectrum sources are more likely to show weak emission lines in their optical spectra. We conclude that these flat-spectrum and steep-spectrum radio sources mainly represent different stages in radio-galaxy evolution, rather than beamed and unbeamed radio-source populations.
We investigate the sample of 213 GPS sources selected from simultaneous multi-frequency 1-22 GHz observations obtained with RATAN-600 radio telescope. We use publicly available data to characterize parsec-scale structure of the selected sources. Among them we found 121 core dominated sources, 76 Compact Symmetric Object (CSO) candidates (24 of them are highly probable), 16 sources have complex parsec-scale morphology. Most of GPS galaxies are characterized by CSO-type morphology and lower observed peak frequency (~1.8 GHz). Most of GPS quasars are characterized by core-jet-type morphology and higher observed peak frequency (~3.6 GHz). This is in good agreement with previous results. However, we found a number of sources for which the general relation CSO - galaxy, core-jet - quasar does not hold. These sources deserve detailed investigation. Assuming simple synchrotron model of a homogeneous cloud we estimate characteristic magnetic field in parsec-scale components of GPS sources to be B ~ 10 mG.