Separable Representation of Phenomenological Optical Potentials of Woods-Saxon Type


Abstract in English

Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used.} Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. The purpose of this paper is to introduce a separable representation for complex phenomenological optical potentials of Woods-Saxon type. Results: Starting from a global optical potential, a separable representation thereof is introduced based on the Ernst-Shakin-Thaler (EST) scheme. This scheme is generalized to non-hermitian potentials. Applications to n$+^{48}$Ca, n$+^{132}$Sn and n$+^{208}$Pb are investigated for energies from 0 to 50 MeV and the quality of the representation is examined. Conclusions: We find a good description of the on-shell t-matrix for all systems with rank up to 5. The required rank depends inversely on the angular momentum. The resulting separable interaction exhibits a different off-shell behavior compared to the original potential, reducing the high momentum contributions.

Download