Do you want to publish a course? Click here

Particle entanglement in continuum many-body systems via quantum Monte Carlo

162   0   0.0 ( 0 )
 Added by Christopher Herdman
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entanglement of spatial bipartitions, used to explore lattice models in condensed matter physics, may be insufficient to fully describe itinerant quantum many-body systems in the continuum. We introduce a procedure to measure the Renyi entanglement entropies on a particle bipartition, with general applicability to continuum Hamiltonians via path integral Monte Carlo methods. Via direct simulations of interacting bosons in one spatial dimension, we confirm a logarithmic scaling of the single-particle entanglement entropy with the number of particles in the system. The coefficient of this logarithmic scaling increases with interaction strength, saturating to unity in the strongly interacting limit. Additionally, we show that the single-particle entanglement entropy is bounded by the condensate fraction, suggesting a practical route towards its measurement in future experiments.



rate research

Read More

63 - G. Guijarro 2020
In this Thesis, we report a detailed study of the ground-state properties of a set of quantum few- and many-body systems in one and two dimensions with different types of interactions by using Quantum Monte Carlo methods. Nevertheless, the main focus of this work is the study of the ground-state properties of an ultracold Bose system with dipole-dipole interaction between the particles. We consider the cases where the bosons are confined to a bilayer and multilayer geometries, that consist of equally spaced two-dimensional layers. These layers can be experimentally realized by imposing tight confinement in one direction. We specifically address the study of new quantum phases, their properties, and transitions between them. One expects these systems to have a rich collection of few- and many-body phases because the dipole-dipole interaction is anisotropic and quasi long-range.
The single-particle density is the most basic quantity that can be calculated from a given many-body wave function. It provides the probability to find a particle at a given position when the average over many realizations of an experiment is taken. However, the outcome of single experimental shots of ultracold atom experiments is determined by the $N$-particle probability density. This difference can lead to surprising results. For example, independent Bose-Einstein condensates (BECs) with definite particle numbers form interference fringes even though no fringes would be expected based on the single-particle density [1-4]. By drawing random deviates from the $N$-particle probability density single experimental shots can be simulated from first principles [1, 3, 5]. However, obtaining expressions for the $N$-particle probability density of realistic time-dependent many-body systems has so far been elusive. Here, we show how single experimental shots of general ultracold bosonic systems can be simulated based on numerical solutions of the many-body Schrodinger equation. We show how full counting distributions of observables involving any number of particles can be obtained and how correlation functions of any order can be evaluated. As examples we show the appearance of interference fringes in interacting independent BECs, fluctuations in the collisions of strongly attractive BECs, the appearance of randomly fluctuating vortices in rotating systems and the center of mass fluctuations of attractive BECs in a harmonic trap. The method described is broadly applicable to bosonic many-body systems whose phenomenology is driven by information beyond what is typically available in low-order correlation functions.
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons, and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter we develop a semiclassical description of the fluctuation properties based on the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions and the full statistical distributions of the interference between two one-dimensional systems, either independent or tunnel-coupled and compare with the Luttinger-liquid theory.
114 - Klaus Ziegler 2021
The diagonal elements of the time correlation matrix are used to probe closed quantum systems that are measured at random times. This enables us to extract two distinct parts of the quantum evolution, a recurrent part and an exponentially decaying part. This separation is strongly affected when spectral degeneracies occur, for instance, in the presence of spontaneous symmetry breaking. Moreover, the slowest decay rate is determined by the smallest energy level spacing, and this decay rate diverges at the spectral degeneracies. Probing the quantum evolution with the diagonal elements of the time correlation matrix is discussed as a general concept and tested in the case of a bosonic Josephson junction. It reveals for the latter characteristic properties at the transition to Hilbert-space localization.
An ab-initio method for determining the dynamical structure function of an interacting many--body quantum system has been devised by combining a generalized integral transform method with Quantum Monte Carlo methods. As a first application, the coherent and, separately, the incoherent excitation spectrum of bulk atomic 4He has been computed, both in the low and intermediate momentum range. The peculiar form of the kernel in the integral transform of the dynamical structure function allows to predict, without using any model, both position and width of the collective excitations in the maxon--roton region, as well as the second collective peak. A prediction of the dispersion of the single--particle modes described by the incoherent part is also presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا