Do you want to publish a course? Click here

Reducing complexes in multidimensional persistent homology theory

148   0   0.0 ( 0 )
 Added by Claudia Landi
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

The Discrete Morse Theory of Forman appeared to be useful for providing filtration-preserving reductions of complexes in the study of persistent homology. So far, the algorithms computing discrete Morse matchings have only been used for one-dimensional filtrations. This paper is perhaps the first attempt in the direction of extending such algorithms to multidimensional filtrations. Initial framework related to Morse matchings for the multidimensional setting is proposed, and a matching algorithm given by King, Knudson, and Mramor is extended in this direction. The correctness of the algorithm is proved, and its complexity analyzed. The algorithm is used for establishing a reduction of a simplicial complex to a smaller but not necessarily optimal cellular complex. First experiments with filtrations of triangular meshes are presented.



rate research

Read More

Multidimensional persistence studies topological features of shapes by analyzing the lower level sets of vector-valued functions. The rank invariant completely determines the multidimensional analogue of persistent homology groups. We prove that multidimensional rank invariants are stable with respect to function perturbations. More precisely, we construct a distance between rank invariants such that small changes of the function imply only small changes of the rank invariant. This result can be obtained by assuming the function to be just continuous. Multidimensional stability opens the way to a stable shape comparison methodology based on multidimensional persistence.
In topological data analysis, persistent homology is used to study the shape of data. Persistent homology computations are completely characterized by a set of intervals called a bar code. It is often said that the long intervals represent the topological signal and the short intervals represent noise. We give evidence to dispute this thesis, showing that the short intervals encode geometric information. Specifically, we prove that persistent homology detects the curvature of disks from which points have been sampled. We describe a general computational framework for solving inverse problems using the average persistence landscape, a continuous mapping from metric spaces with a probability measure to a Hilbert space. In the present application, the average persistence landscapes of points sampled from disks of constant curvature results in a path in this Hilbert space which may be learned using standard tools from statistical and machine learning.
Comparison between multidimensional persistent Betti numbers is often based on the multidimensional matching distance. While this metric is rather simple to define and compute by considering a suitable family of filtering functions associated with lines having a positive slope, it has two main drawbacks. First, it forgets the natural link between the homological properties of filtrations associated with lines that are close to each other. As a consequence, part of the interesting homological information is lost. Second, its intrinsically discontinuous definition makes it difficult to study its properties. In this paper we introduce a new matching distance for 2D persistent Betti numbers, called coherent matching distance and based on matchings that change coherently with the filtrations we take into account. Its definition is not trivial, as it must face the presence of monodromy in multidimensional persistence, i.e. the fact that different paths in the space parameterizing the above filtrations can induce different matchings between the associated persistent diagrams. In our paper we prove that the coherent 2D matching distance is well-defined and stable.
An exact computation of the persistent Betti numbers of a submanifold $X$ of a Euclidean space is possible only in a theoretical setting. In practical situations, only a finite sample of $X$ is available. We show that, under suitable density conditions, it is possible to estimate the multidimensional persistent Betti numbers of $X$ from the ones of a union of balls centered on the sample points; this even yields the exact value in restricted areas of the domain. Using these inequalities we improve a previous lower bound for the natural pseudodistance to assess dissimilarity between the shapes of two objects from a sampling of them. Similar inequalities are proved for the multidimensional persistent Betti numbers of the ball union and the one of a combinatorial description of it.
This paper proves that in Size Theory the comparison of multidimensional size functions can be reduced to the 1-dimensional case by a suitable change of variables. Indeed, we show that a foliation in half-planes can be given, such that the restriction of a multidimensional size function to each of these half-planes turns out to be a classical size function in two scalar variables. This leads to the definition of a new distance between multidimensional size functions, and to the proof of their stability with respect to that distance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا