High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions


Abstract in English

A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially-resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally-incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is of the order of the pulsewidth, whereas a spatial resolution of a few microns is achieved by this optical technique. In addition, this technique does not suffer from refraction effects due to the steep plasma density gradients owing to the near-normal incidence of the probe pulse and consequently, higher harmonics of the probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The micron-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.

Download