No Arabic abstract
The honeycomb lattice material Li2RuO3 undergoes a dimerization of Ru4+ cations on cooling below 270C, where the magnetic susceptibility vanishes. We use density functional theory calculations to show that this reflects the formation of a valence bond crystal, with a strong bond disproportionation. On warming, x-ray diffraction shows that discrete three-fold symmetry is regained on average, and the dimerization apparently disappears. In contrast, local structural measurements using high-energy x-rays, show that disordered dimers survive at the nanoscale up to at least 650C. The high temperature phase of Li2RuO3 is thus an example of a valence bond liquid, where thermal fluctuations drive resonance between different dimer coverages, a classic analogue of the resonating valence bond state often discussed in connection with high T$_c$ cuprates.
In addition to low-energy spin fluctuations, which distinguish them from band insulators, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in most situations spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the SU(4) symmetric Kugel-Khomskii model on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking - lattice or SU(N) - is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba_3CuSb_2O_9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms.
Using variational wave functions and Monte Carlo techniques, we study the antiferromagnetic Heisenberg model with first-neighbor $J_1$ and second-neighbor $J_2$ antiferromagnetic couplings on the honeycomb lattice. We perform a systematic comparison of magnetically ordered and nonmagnetic states (spin liquids and valence-bond solids) to obtain the ground-state phase diagram. Neel order is stabilized for small values of the frustrating second-neighbor coupling. Increasing the ratio $J_2/J_1$, we find strong evidence for a continuous transition to a nonmagnetic phase at $J_2/J_1 approx 0.23$. Close to the transition point, the Gutzwiller-projected uniform resonating valence bond state gives an excellent approximation to the exact ground-state energy. For $0.23 lesssim J_2/J_1 lesssim 0.4$, a gapless $Z_2$ spin liquid with Dirac nodes competes with a plaquette valence-bond solid. In contrast, the gapped spin liquid considered in previous works has significantly higher variational energy. Although the plaquette valence-bond order is expected to be present as soon as the Neel order melts, this ordered state becomes clearly favored only for $J_2/J_1 gtrsim 0.3$. Finally, for $0.36 lesssim J_2/J_1 le 0.5$, a valence-bond solid with columnar order takes over as the ground state, being also lower in energy than the magnetic state with collinear order. We perform a detailed finite-size scaling and standard data collapse analysis, and we discuss the possibility of a deconfined quantum critical point separating the Neel antiferromagnet from the plaquette valence-bond solid.
Using large-scale quantum Monte Carlo simulations, we exactly solve a model of Fermions hopping on the honeycomb lattice with cluster charge interactions, which has been proposed as an effective model with possible application to twisted bilayer graphene near half-filling. We find an interaction driven semimetal to insulator transition to an insulating phase consisting of a valence bond solid with Kekule pattern. Finite size scaling reveals that the phase transition of the semimetal to Kekule valence bond solid phase is continuous and belongs to chiral XY universality class.
We present a quantu spin liquid state in a spin-1/2 honeycomb lattice with randomness in the exchange interaction. That is, we successfully introduce randomness into the organic radial-based complex and realize a random-singlet (RS) state. All magnetic and thermodynamic experimental results indicate the liquid-like behaviors, which are consistent with those expected in the RS state. These results demonstrate that the randomness or inhomogeneity in the actual systems stabilize the RS state and yield liquid-like behavior.
Conflicting predictions have been made for the ground state of the SU(3) Heisenberg model on the honeycomb lattice: Tensor network simulations found a plaquette order [Zhao et al, Phys. Rev. B 85, 134416 (2012)], where singlets are formed on hexagons, while linear flavor-wave theory (LFWT) suggested a dimerized, color ordered state [Lee and Yang, Phys. Rev. B 85, 100402 (2012)]. In this work we show that the former state is the true ground state by a systematic study with infinite projected-entangled pair states (iPEPS), for which the accuracy can be systematically controlled by the so-called bond dimension $D$. Both competing states can be reproduced with iPEPS by using different unit cell sizes. For small $D$ the dimer state has a lower variational energy than the plaquette state, however, for large $D$ it is the latter which becomes energetically favorable. The plaquette formation is also confirmed by exact diagonalizations and variational Monte Carlo studies, according to which both the dimerized and plaquette states are non-chiral flux states.