We study the nonlinear Schr$ddot{o}$dinger equation with a PT-symmetric potential. Using a hydrodynamic formulation and connecting the phase gradient to the field amplitude, allows for a reduction of the model to a Duffing or a generalized Duffing equation. This way, we can obtain exact soliton solutions existing in the presence of suitable PT-symmetric potentials, and study their stability and dynamics. We report interesting new features, including oscillatory instabilities of solitons and (nonlinear) PT-symmetry breaking transitions, for focusing and defocusing nonlinearities.