The characterization of quantum correlations in terms of information-theoretic resource has been a fruitful approach to understand the power of quantum correlations as a resource. While bipartite entanglement and Bell inequality violation in this setting have been extensively studied, relatively little is known about their multipartite counterpart. In this paper, we apply and adapt the recently proposed definitions of multipartite nonlocality [Phys. Rev. A 88, 014102] to the three- and four-partite scenario to gain new insight on the resource aspect of multipartite nonlocal quantum correlations. Specifically, we show that reproducing certain tripartite quantum correlations requires mixtures of classical resources --- be it the ability to change the groupings or the time orderings of measurements. Thus, when seen from the perspective of biseparable one-way classical signaling resources, certain tripartite quantum correlations do not admit a definite causal order. In the four- partite scenario, we obtain a superset description of the set of biseparable correlations which can be produced by allowing two groups of bipartite non-signaling resources. Quantum violation of the resulting Bell-like inequalities are investigated. As a byproduct, we obtain some new examples of device-independent witnesses for genuine four-partite entanglement, and also device-independent witnesses that allows one to infer the structure of the underlying multipartite entanglement.