By virtue of its proximity, the Virgo Cluster is an ideal laboratory for testing our understanding structure formation in the Universe. In this spirit, we present a dynamical study Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo (SHIVir) survey. H$alpha$ rotation curves (RC) for our gas-rich galaxies were modelled with a multi-parameter fit function from which various velocity measurements were inferred. Our study takes advantage of archival and our own new data as we aim to compile the largest Tully-Fisher relation (TFR) for a cluster to date. Extended velocity dispersion profiles (VDP) are integrated over varying aperture sizes to extract representative velocity dispersions (VDs) for gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy VD in the literature, we rectify this situation by determining the radius at which the measured VD yields the tightest Fundamental Plane (FP). We found that radius to be at least 1 $R_{rm e}$, which exceeds the extent of most dispersion profiles in other works.