Local correlation effects on the s+-- and s++-wave superconductivities mediated by magnetic and orbital fluctuations in the 5-orbital Hubbard model for iron pnictides


Abstract in English

We investigate the electronic state and the superconductivity in the 5-orbital Hubbard model for iron pnictides by using the dynamical mean-field theory in conjunction with the Eliashberg equation. The renormalization factor exhibits significant orbital dependence resulting in the large change in the band dispersion as observed in recent ARPES experiments. The critical interactions towards the magnetic, orbital and superconducting instabilities are suppressed as compared with those from the random phase approximation (RPA) due to local correlation effects. Remarkably, the s++-pairing phase due to the orbital fluctuation is largely expanded relative to the RPA result, while the s+--pairing phase due to the magnetic fluctuation is reduced.

Download