Do you want to publish a course? Click here

Alignment in star-debris disc systems seen by Herschel

170   0   0.0 ( 0 )
 Added by Jane Greaves
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A to M where the stellar inclination is known and can be compared to that of the spatially-resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Suns Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star-disc tilt of ~<10 degrees. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of AU are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts.



rate research

Read More

79 - Claire L Davies 2019
The discovery of close in, giant planets (hot Jupiters) with orbital angular momentum vectors misaligned with respect to the rotation axis of their host stars presents problems for planet formation theories in which planets form in discs with angular momentum vectors aligned with that of the star. Violent, high eccentricity migration mechanisms purported to elevate planetary orbits above the natal disc plane predict populations of proto-hot Jupiters which have not been observed with Kepler. Alternative theories invoking primordial star-disc misalignments have recently received more attention. Here, the relative alignment between stars and their protoplanetary discs is assessed for the first time for a sample of 20 pre-main-sequence stars. Recently published rotation periods derived from high quality, long duration, high cadence K2 light curves for members of the $rho$ Ophiuchus and Upper Scorpius star forming regions are matched with high angular resolution observations of spatially resolved discs and projected rotational velocities to determine stellar rotation axis inclination angles which are then compared to the disc inclinations. Ten of the fifteen systems for which the stellar inclination could be estimated are consistent with star-disc alignment while five systems indicate potential misalignments between the star and its disc. The potential for chance misalignment of aligned systems due to projection effects and characteristic measurement uncertainties is also investigated. While the observed frequency of apparent star-disc misalignments could be reproduced by a simulated test population in which 100% of systems are truly aligned, the distribution of the scale of inferred misalignment angles could not.
Warm debris disks are a sub-sample of the large population of debris disks, and display excess emission in the mid-IR. Around solar-type stars, very few objects show emission features in mid-IR spectroscopic observations, that are attributed to small, warm silicate dust grains. The origin of this warm dust can possibly be explained either by a collision between several bodies or by transport from an outer belt. We present and analyse new far-IR Herschel/Pacs observations, supplemented by ground-based data in the mid-IR (VLTI/Midi and VLT/Visir), for one of these rare systems: the 10-16 Myr old debris disk around HD 113766 A. We improve an existing model to account for these new observations, and better constrain the spatial distribution of the dust and its composition. We underline the limitations of SED modelling and the need for spatially resolved observations. We find that the system is best described by an inner disk located within the first AU, well constrained by the Midi data, and an outer disk located between 9-13 AU. In the inner dust belt, our previous finding of Fe-rich crystalline olivine grains still holds. We do not observe time variability of the emission features over at least a 8 years time span, in a environment subjected to strong radiation pressure. The time stability of the emission features indicates that {mu}m-sized dust grains are constantly replenished from the same reservoir, with a possible depletion of sub-{mu}m-sized grains. We suggest that the emission features may arise from multi-composition aggregates. We discuss possible scenarios concerning the origin of the warm dust. The compactness of the innermost regions as probed by Midi, as well as the dust composition, suggest that we are witnessing the outcomes of (at least) one collision between partially differentiated bodies, in an environment possibly rendered unstable by terrestrial planetary formation.
125 - A. Moor , A. Kospal , P. Abraham 2014
A significant fraction of main-sequence stars are encircled by dusty debris discs, where the short-lived dust particles are replenished through collisions between planetesimals. Most destructive collisions occur when the orbits of smaller bodies are dynamically stirred up, either by the gravitational effect of locally formed Pluto-sized planetesimals (self-stirring scenario), or via secular perturbation caused by an inner giant planet (planetary stirring). The relative importance of these scenarios in debris systems is unknown. Here we present new Herschel Space Observatory imagery of 11 discs selected from the most massive and extended known debris systems. All discs were found to be extended at far-infrared wavelengths, five of them being resolved for the first time. We evaluated the feasibility of the self-stirring scenario by comparing the measured disc sizes with the predictions of the model calculated for the ages of our targets. We concluded that the self-stirring explanation works for seven discs. However, in four cases, the predicted pace of outward propagation of the stirring front, assuming reasonable initial disc masses, was far too low to explain the radial extent of the cold dust. Therefore, for HD 9672, HD 16743, HD 21997, and HD 95086, another explanation is needed. We performed a similar analysis for {ss} Pic and HR 8799, reaching the same conclusion. We argue that planetary stirring is a promising possibility to explain the disk properties in these systems. In HR 8799 and HD 95086 we may already know the potential perturber, since their known outer giant planets could be responsible for the stirring process. Our study demonstrates that among the largest and most massive debris discs self-stirring may not be the only active scenario, and potentially planetary stirring is responsible for destructive collisions and debris dust production in a number of systems.
[abridged] Aims. Our Herschel Open Time Key Programme DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods. We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results. A standard single component disk model fails to reproduce the major axis radial profiles at 70 um, 100 um, and 160 um simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions. The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust.
We present Herschel far-infrared and submillimeter maps of the debris disk associated with the HR 8799 planetary system. We resolve the outer disk emission at 70, 100, 160 and 250 um and detect the disk at 350 and 500 um. A smooth model explains the observed disk emission well. We observe no obvious clumps or asymmetries associated with the trapping of planetesimals that is a potential consequence of planetary migration in the system. We estimate that the disk eccentricity must be <0.1. As in previous work by Su et al. (2009), we find a disk with three components: a warm inner component and two outer components, a planetesimal belt extending from 100 - 310 AU, with some flexibility (+/- 10 AU) on the inner edge, and the external halo which extends to ~2000 AU. We measure the disk inclination to be 26 +/- 3 deg from face-on at a position angle of 64 deg E of N, establishing that the disk is coplanar with the star and planets. The SED of the disk is well fit by blackbody grains whose semi-major axes lie within the planetesimal belt, suggesting an absence of small grains. The wavelength at which the spectrum steepens from blackbody, 47 +/- 30 um, however, is short compared to other A star debris disks, suggesting that there are atypically small grains likely populating the halo. The PACS longer wavelength data yield a lower disk color temperature than do MIPS data (24 and 70 um), implying two distinct halo dust grain populations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا