A measurement of the energy dependence of antineutrino disappearance at the Daya Bay Reactor Neutrino Experiment is reported. Electron antineutrinos ($overline{ u}_{e}$) from six $2.9$ GW$_{rm th}$ reactors were detected with six detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls. Using 217 days of data, 41589 (203809 and 92912) antineutrino candidates were detected in the far hall (near halls). An improved measurement of the oscillation amplitude $sin^{2}2theta_{13} = 0.090^{+0.008}_{-0.009} $ and the first direct measurement of the $overline{ u}_{e}$ mass-squared difference $|Delta m^{2}_{ee}|= (2.59_{-0.20}^{+0.19}) times 10^{-3} {rm eV}^2 $ is obtained using the observed $overline{ u}_{e}$ rates and energy spectra in a three-neutrino framework. This value of $|Delta m^{2}_{ee}|$ is consistent with $|Delta m^{2}_{mumu}|$ measured by muon neutrino disappearance, supporting the three-flavor oscillation model.
We report an improved measurement of the neutrino mixing angle $theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $sin^22theta_{13}$ with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GW$_{rm th}$ were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is $0.944pm 0.007({rm stat.}) pm 0.003({rm syst.})$. An analysis of the relative rates in six detectors finds $sin^22theta_{13}=0.089pm 0.010({rm stat.})pm0.005({rm syst.})$ in a three-neutrino framework.
We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9$times$10$^5$ GW$_{rm th}$-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six $^{241}$Am-$^{13}$C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of $sin^{2}2theta_{13}$ and $|Delta m^2_{ee}|$ were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave $sin^{2}2theta_{13} = 0.084pm0.005$ and $|Delta m^{2}_{ee}|= (2.42pm0.11) times 10^{-3}$ eV$^2$ in the three-neutrino framework.
A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $overline{ u}_{e}$s. Comparison of the $overline{ u}_{e}$ rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors ($sim$1500-1950 m) relative to detectors near the reactors ($sim$350-600 m) allowed a precise measurement of $overline{ u}_{e}$ disappearance. More than 2.5 million $overline{ u}_{e}$ inverse beta decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (Dec. 2011--Jul. 2012) with a subsequent 1013 days using the complete configuration of eight detectors (Oct. 2012--Jul. 2015). The $overline{ u}_{e}$ rate observed at the far detectors relative to the near detectors showed a significant deficit, $R=0.949 pm 0.002(mathrm{stat.}) pm 0.002(mathrm{syst.})$. The energy dependence of $overline{ u}_{e}$ disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle $sin^22theta_{13}=0.0841 pm 0.0027(mathrm{stat.}) pm 0.0019(mathrm{syst.})$ and the effective neutrino mass-squared difference of $left|{Delta}m^2_{mathrm{ee}}right|=(2.50 pm 0.06(mathrm{stat.}) pm 0.06(mathrm{syst.})) times 10^{-3} {rm eV}^2$. Analysis using the exact three-flavor probability found ${Delta}m^2_{32}=(2.45 pm 0.06(mathrm{stat.}) pm 0.06(mathrm{syst.})) times 10^{-3} {rm eV}^2$ assuming the normal neutrino mass hierarchy and ${Delta}m^2_{32}=(-2.56 pm 0.06(mathrm{stat.}) pm 0.06(mathrm{syst.})) times 10^{-3} {rm eV}^2$ for the inverted hierarchy.
We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $overline{ u}_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic $^9$Li and $^8$He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative $overline{ u}_{e}$ rates and energy spectra among detectors yields $sin^{2}2theta_{13} = 0.0856pm 0.0029$ and $Delta m^2_{32}=(2.471^{+0.068}_{-0.070})times 10^{-3}~mathrm{eV}^2$ assuming the normal hierarchy, and $Delta m^2_{32}=-(2.575^{+0.068}_{-0.070})times 10^{-3}~mathrm{eV}^2$ assuming the inverted hierarchy.
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 $pm$ 0.04) $times$ 10$^{-18}$~cm$^2$/GW/day or (5.92 $pm$ 0.14) $times$ 10$^{-43}$~cm$^2$/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is $0.946pm0.022$ ($0.991pm0.023$) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2$sigma$ over the full energy range with a local significance of up to $sim$4$sigma$ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
Daya Bay Collaboration: F.P. An
,A.B. Balantekin
,H.R. Band
.
(2013)
.
"Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay"
.
David E. Jaffe
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا