Do you want to publish a course? Click here

Some remarks on Leibniz algebras whose semisimple part related with $sl_2$

282   0   0.0 ( 0 )
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we identify the structure of complex finite-dimensional Leibniz algebras with associated Lie algebras $sl_2^1oplus sl_2^2oplus dots oplus sl_2^soplus R,$ where $R$ is a solvable radical. The classifications of such Leibniz algebras in the cases $dim R=2, 3$ and $dim I eq 3$ have been obtained. Moreover, we classify Leibniz algebras with $L/Icong sl_2^1oplus sl_2^2$ and some conditions on ideal $I=id<[x,x] | xin L>.$



rate research

Read More

In this paper we prove some general results on Leibniz 2-cocycles for simple Leibniz algebras. Applying these results we establish the triviality of the second Leibniz cohomology for a simple Leibniz algebra with coefficients in itself, whose associated Lie algebra is isomorphic to $mathfrak{sl}_2$.
The present paper is devoted to the investigation of properties of Cartan subalgebras and regular elements in Leibniz $n$-algebras. The relationship between Cartan subalgebras and regular elements of given Leibniz $n$-algebra and Cartan subalgebras and regular elements of the corresponding factor $n$-Lie algebra is established.
We describe solvable Leibniz algebras whose nilradical is a quasi-filiform Leibniz algebra of maximum length.
The present article is a part of the study of solvable Leibniz algebras with a given nilradical. In this paper solvable Leibniz algebras, whose nilradicals is naturally graded quasi-filiform algebra and the complemented space to the nilradical has maximal dimension, are described up to isomorphism.
109 - Apurba Das , Shuangjian Guo 2021
In this paper, we introduce twisted relative Rota-Baxter operators on a Leibniz algebra as a generalization of twisted Poisson structures. We define the cohomology of a twisted relative Rota-Baxter operator $K$ as the Loday-Pirashvili cohomology of a certain Leibniz algebra induced by $K$ with coefficients in a suitable representation. Then we consider formal deformations of twisted relative Rota-Baxter operators from cohomological points of view. Finally, we introduce and study NS-Leibniz algebras as the underlying structure of twisted relative Rota-Baxter operators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا