Radiative emission of neutrino pair (RENP) from atomic states is a new tool to experimentally investigate undetermined neutrino parameters such as the smallest neutrino mass, the nature of neutrino masses (Majorana vs Dirac), and their CP properties. We study effects of neutrino pair emission either from nucleus or from inner core electrons in which the zero-th component of quark or electron vector current gives rise to large coupling. Both the overall rate and the spectral shape of photon energy are given for a few cases of interesting target atoms. Calculated rates exceed those of previously considered target atoms by many orders of magnitudes.
A scheme of quantum electrodynamic (QED) background-free radiative emission of neutrino pair (RENP) is proposed in order to achieve precision determination of neutrino properties so far not accessible. The important point for the background rejection is the fact that the dispersion relation between wave vector along propagating direction in wave guide (and in a photonic-crystal type fiber) and frequency is modified by a discretized non-vanishing effective mass. This effective mass acts as a cutoff of allowed frequencies, and one may select the RENP photon energy region free of all macro-coherently amplified QED processes by choosing the cutoff larger than the mass of neutrinos.
It is proposed to use the isomer ionic ground state $^{229m}$Th$^{4+}$ embedded in transparent crystals for precision determination of unknown neutrino parameters. Isolation from solid environment of the proposed nuclear process, along with available experimental techniques of atomic physics, has a great potentiality for further study.
The photon spectrum in macrocoherent atomic de-excitation via radiative emission of neutrino pairs (RENP) has been proposed as a sensitive probe of the neutrino mass spectrum, capable of competing with conventional neutrino experiments. In this paper we revisit this intriguing technique in order to quantify the requirements for statistical determination of some of the properties of the neutrino spectrum, in particular the neutrino mass scale and the mass ordering. Our results are sobering. We find that, even under ideal conditions, the determination of neutrino parameters needs experimental live times of the order of days to years for several laser frequencies, assuming a target of volume of order 100 cm3 containing about 10^21 atoms per cubic centimeter in a totally coherent state with maximum value of the electric field in the target. Such conditions seem to be, as of today, way beyond the reach of our current technology.
We calculate coherent elastic neutrino-nucleus scattering cross sections on spin-0 nuclei (e.g. $^{40}$Ar and $^{28}$Si) at energies below 100 MeV within the Standard Model and account for all effects of permille size. We provide a complete error budget including uncertainties at nuclear, nucleon, hadronic, and quark levels separately as well as perturbative error. Our calculation starts from the four-fermion effective field theory to explicitly separate heavy-particle mediated corrections (which are absorbed by Wilson coefficients) from light-particle contributions. Electrons and muons running in loops introduce a nontrivial dependence on the momentum transfer due to their relatively light masses. These same loops, and those mediated by tau leptons, break the flavor universality because of mass-dependent electromagnetic radiative corrections. Nuclear physics uncertainties significantly cancel in flavor asymmetries resulting in subpercent relative errors. We find that for low neutrino energies, the cross section can be predicted with a relative precision that is competitive with neutrino-electron scattering. We highlight potentially useful applications of such a precise cross section prediction ranging from precision tests of the Standard Model, to searches for new physics and to the monitoring of nuclear reactors.
Heavy sterile neutrinos with masses ${mathcal O}(100)$ MeV mixing with active neutrinos can be produced in the core of a collapsing supernova (SN). In order to avoid an excessive energy loss, shortening the observed duration of the SN 1987A neutrino burst, we show that the active-sterile neutrino mixing angle should satisfy $sin^2 theta lesssim 5 times 10^{-7}$. For a mixing with tau flavour, this bound is much stronger than the ones from laboratory searches. Moreover, we show that in the viable parameter space the decay of such heavy sterile neutrinos in the SN envelope would lead to a very energetic flux of daughter active neutrinos; if not too far below current limits, this would be detectable in large underground neutrino observatories, like Super-Kamiokande, as a (slightly time-delayed) high-energy bump in the spectrum of a forthcoming Galactic SN event.
M. Yoshimura
,N. Sasao (Center of Quantum Universe
,Faculty ofn Science
.
(2013)
.
"Radiative emission of neutrino pair from nucleus and inner core electrons in heavy atoms"
.
Motohiko Yoshimura
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا