No Arabic abstract
We present methods and results of shot-by-shot correlation of noisy measurements to extract entangled state and process tomography in a superconducting qubit architecture. We show that averaging continuous values, rather than counting discrete thresholded values, is a valid tomographic strategy and is in fact the better choice in the low signal-to-noise regime. We show that the effort to measure $N$-body correlations from individual measurements scales exponentially with $N$, but with sufficient signal-to-noise the approach remains viable for few-body correlations. We provide a new protocol to optimally account for the transient behavior of pulsed measurements. Despite single-shot measurement fidelity that is less than perfect, we demonstrate appropriate processing to extract and verify entangled states and processes.
We consider realistic measurement systems, where measurements are accompanied by decoherence processes. The aim of this work is the construction of methods and algorithms for precise quantum measurements with fidelity close to the fundamental limit. In the present work the notions of ideal and non-ideal quantum measurements are strictly formalized. It is shown that non-ideal quantum measurements could be represented as a mixture of ideal measurements. Based on root approach the quantum state reconstruction method is developed. Informational accuracy theory of non-ideal quantum measurements is proposed. The monitoring of the amount of information about the quantum state parameters is examined, including the analysis of the information degradation under the noise influence. The study of achievable fidelity in non-ideal quantum measurements is performed. The results of simulation of fidelity characteristics of a wide class of quantum protocols based on polyhedrons geometry with high level of symmetry are presented. The impact of different decoherence mechanisms, including qubit amplitude and phase relaxation, bit-flip and phase-flip, is considered.
Quantum tomography makes it possible to obtain comprehensive information about certain logical elements of a quantum computer. In this regard, it is a promising tool for debugging quantum computers. The practical application of tomography, however, is still limited by systematic measurement errors. Their main source are errors in the quantum state preparation and measurement procedures. In this work, we investigate the possibility of suppressing these errors in the case of ion-based qudits. First, we will show that one can construct a quantum measurement protocol that contains no more than a single quantum operation in each measurement circuit. Such a protocol is more robust to errors than the measurements in mutually unbiased bases, where the number of operations increases in proportion to the square of the qudit dimension. After that, we will demonstrate the possibility of determining and accounting for the state initialization and readout errors. Together, the measures described can significantly improve the accuracy of quantum tomography of real ion-based qudits.
Observing a physical quantity without disturbing it is a key capability for the control of individual quantum systems. Such back-action-evading or quantum-non-demolition measurements were first introduced in the 1970s in the context of gravitational wave detection to measure weak forces on test masses by high precision monitoring of their motion. Now, such techniques have become an indispensable tool in quantum science for preparing, manipulating, and detecting quantum states of light, atoms, and other quantum systems. Here we experimentally perform rapid optical quantum-noise-limited measurements of the position of a mechanical oscillator by using pulses of light with a duration much shorter than a period of mechanical motion. Using this back-action evading interaction we performed both state preparation and full state tomography of the mechanical motional state. We have reconstructed mechanical states with a position uncertainty reduced to 19 pm, limited by the quantum fluctuations of the optical pulse, and we have performed `cooling-by-measurement to reduce the mechanical mode temperature from an initial 1100 K to 16 K. Future improvements to this technique may allow for quantum squeezing of mechanical motion, even from room temperature, and reconstruction of non-classical states exhibiting negative regions in their phase-space quasi-probability distribution.
We study quantum correlation of Greenberger-Horne-Zeilinger (GHZ) and W states under various noisy channels using measurement-induced disturbance approach and its optimized version. Although these inequivalent maximal entangled states represent the same quantum correlation in the absence of noise, it is shown that the W state is more robust than the GHZ state through most noisy channels. Also, using measurement-induced disturbance measure, we obtain the analytical relations for the time evolution of quantum correlations in terms of the noisy parameter $kappa$ and remove its overestimating quantum correlations upon implementing the ameliorated measurement-induced disturbance.
Quantum state reconstruction based on weak continuous measurement has the advantage of being fast, accurate, and almost non-perturbative. In this work we present a pedagogical review of the protocol proposed by Silberfarb et al., PRL 95 030402 (2005), whereby an ensemble of identically prepared systems is collectively probed and controlled in a time-dependent manner so as to create an informationally complete continuous measurement record. The measurement history is then inverted to determine the state at the initial time through a maximum-likelihood estimate. The general formalism is applied to the case of reconstruction of the quantum state encoded in the magnetic sublevels of a large-spin alkali atom, 133Cs. We detail two different protocols for control. Using magnetic interactions and a quadratic ac-Stark shift, we can reconstruct a chosen hyperfine manifold F, e.g., the 7-dimensional F=3 manifold in the electronic-ground state of Cs. We review the procedure as implemented in experiments (Smith et al., PRL 97 180403 (2006)). We extend the protocol to the more ambitious case of reconstruction of states in the full 16-dimensional electronic-ground subspace (F=3 oplus F=4), controlled by microwaves and radio-frequency magnetic fields. We give detailed derivations of all physical interactions, approximations, numerical methods, and fitting procedures, tailored to the realistic experimental setting. For the case of light-shift and magnetic control, reconstruction fidelities of sim 0.95 have been achieved, limited primarily by inhomogeneities in the light shift. For the case of microwave/RF-control we simulate fidelity >0.97, limited primarily by signal-to-noise.