Shape-Preserving Accelerating Electromagnetic Wavepackets in Curved Space


Abstract in English

We present shape-preserving spatially accelerating electromagnetic wavepackets in curved space: wavepackets propagating along non-geodesic trajectories while recovering their structure periodically. These wavepackets are solutions to the paraxial and non-paraxial wave equation in curved space. We analyze the dynamics of such beams propagating on surfaces of revolution, and find solutions that carry finite power. These solutions propagate along a variety of non-geodesic trajectories, reflecting the interplay between the curvature of space and interference effects, with their intensity profile becoming narrower (or broader) in a scaled self-similar fashion Finally, we extend this concept to nonlinear accelerating beams in curved space supported by the Kerr nonlinearity. Our study concentrates on optical settings, but the underlying concepts directly relate to General Relativity.

Download